
Betamax Documentation
Release 0.8.2

Ian Stapleton Cordasco

Dec 24, 2022

Narrative Documentation

1 Example Use 3

2 What does it even do? 5

3 VCR Cassette Compatibility 7

4 Contents of Betamax’s Documentation 9
4.1 Getting Started . 9

4.1.1 Installation . 9
4.1.2 Configuration . 9
4.1.3 Recording Your First Cassette . 10
4.1.4 Recording More Complex Cassettes . 11

4.2 Long Term Usage Patterns . 15
4.2.1 Adding New Requests to a Cassette . 15
4.2.2 Known Issues . 18

4.3 Configuring Betamax . 18
4.3.1 Global Configuration . 18
4.3.2 Per-Use Configuration . 22
4.3.3 Mixing and Matching . 23

4.4 Record Modes . 23
4.4.1 All . 23
4.4.2 New Episodes . 24
4.4.3 None . 25
4.4.4 Once . 27

4.5 Third-Party Packages . 29
4.5.1 Request Matchers . 29
4.5.2 Cassette Serializers . 30

4.6 Usage Patterns . 34
4.6.1 Configuring Betamax in py.test’s conftest.py . 34
4.6.2 Using Human Readable JSON Cassettes . 35

4.7 Integrating Betamax with Test Frameworks . 36
4.7.1 PyTest Integration . 36
4.7.2 Unittest Integration . 37

4.8 API . 38
4.8.1 Examples . 43
4.8.2 Opinions at Work . 45
4.8.3 Forcing bytes to be preserved . 45

i

4.9 What is a cassette? . 46
4.10 What is a cassette library? . 48
4.11 Implementation Details . 48

4.11.1 Gzip Content-Encoding . 48
4.11.2 Class Details . 49

4.12 Matchers . 49
4.12.1 Default Matchers . 50
4.12.2 Specifying Matchers . 50
4.12.3 Making Your Own Matcher . 50

4.13 Serializers . 53
4.13.1 Creating Your Own Serializer . 54

4.14 Indices and tables . 56

Python Module Index 57

Index 59

ii

Betamax Documentation, Release 0.8.2

Betamax is a VCR imitation for requests. This will make mocking out requests much easier. It is tested on Travis CI.

Put in a more humorous way: “Betamax records your HTTP interactions so the NSA does not have to.”

Narrative Documentation 1

https://github.com/vcr/vcr
https://travis-ci.org/sigmavirus24/betamax

Betamax Documentation, Release 0.8.2

2 Narrative Documentation

CHAPTER 1

Example Use

from betamax import Betamax
from requests import Session
from unittest import TestCase

with Betamax.configure() as config:
config.cassette_library_dir = 'tests/fixtures/cassettes'

class TestGitHubAPI(TestCase):
def setUp(self):

self.session = Session()
self.headers.update(...)

Set the cassette in a line other than the context declaration
def test_user(self):

with Betamax(self.session) as vcr:
vcr.use_cassette('user')
resp = self.session.get('https://api.github.com/user',

auth=('user', 'pass'))
assert resp.json()['login'] is not None

Set the cassette in line with the context declaration
def test_repo(self):

with Betamax(self.session).use_cassette('repo'):
resp = self.session.get(

'https://api.github.com/repos/sigmavirus24/github3.py'
)

assert resp.json()['owner'] != {}

3

Betamax Documentation, Release 0.8.2

4 Chapter 1. Example Use

CHAPTER 2

What does it even do?

If you are unfamiliar with VCR, you might need a better explanation of what Betamax does.

Betamax intercepts every request you make and attempts to find a matching request that has already been intercepted
and recorded. Two things can then happen:

1. If there is a matching request, it will return the response that is associated with it.

2. If there is not a matching request and it is allowed to record new responses, it will make the request, record the
response and return the response.

Recorded requests and corresponding responses - also known as interactions - are stored in files called cassettes. (An
example cassette can be seen in the examples section of the documentation.) The directory you store your cassettes in
is called your library, or your cassette library.

5

https://github.com/vcr/vcr
http://betamax.readthedocs.org/en/latest/api.html#examples
http://betamax.readthedocs.org/en/latest/cassettes.html

Betamax Documentation, Release 0.8.2

6 Chapter 2. What does it even do?

CHAPTER 3

VCR Cassette Compatibility

Betamax can use any VCR-recorded cassette as of this point in time. The only caveat is that python-requests returns
a URL on each response. VCR does not store that in a cassette now but we will. Any VCR-recorded cassette used
to playback a response will unfortunately not have a URL attribute on responses that are returned. This is a minor
annoyance but not something that can be fixed.

7

Betamax Documentation, Release 0.8.2

8 Chapter 3. VCR Cassette Compatibility

CHAPTER 4

Contents of Betamax’s Documentation

4.1 Getting Started

The first step is to make sure Betamax is right for you. Let’s start by answering the following questions

• Are you using Requests?

If you’re not using Requests, Betamax is not for you. You should checkout VCRpy.

• Are you using Sessions or are you using the functional API (e.g., requests.get)?

If you’re using the functional API, and aren’t willing to use Sessions, Betamax is not yet for you.

So if you’re using Requests and you’re using Sessions, you’re in the right place.

Betamax officially supports py.test and unittest but it should integrate well with nose as well.

4.1.1 Installation

$ pip install betamax

4.1.2 Configuration

When starting with Betamax, you need to tell it where to store the cassettes that it creates. There’s two ways to do this:

1. If you’re using Betamax or use_cassette you can pass the cassette_library_dir option. For
example,

import betamax
import requests

session = requests.Session()
recorder = betamax.Betamax(session, cassette_library_dir='cassettes')

(continues on next page)

9

http://docs.python-requests.org/
https://github.com/kevin1024/vcrpy
http://pytest.org/
https://docs.python.org/3/library/unittest.html

Betamax Documentation, Release 0.8.2

(continued from previous page)

with recorder.use_cassette('introduction'):
...

2. You can do it once, globally, for your test suite.

import betamax

with betamax.Betamax.configure() as config:
config.cassette_library_dir = 'cassettes'

Note: If you don’t set a cassette directory, Betamax won’t save cassettes to disk

There are other configuration options that can be provided, but this is the only one that is required.

4.1.3 Recording Your First Cassette

Let’s make a file named our_first_recorded_session.py. Let’s add the following to our file:

import betamax
import requests

CASSETTE_LIBRARY_DIR = 'examples/cassettes/'

def main():
session = requests.Session()
recorder = betamax.Betamax(

session, cassette_library_dir=CASSETTE_LIBRARY_DIR
)

with recorder.use_cassette('our-first-recorded-session'):
session.get('https://httpbin.org/get')

if __name__ == '__main__':
main()

If we then run our script, we’ll see that a new file is created in our specified cassette directory. It should look something
like:

{"http_interactions": [{"request": {"body": {"string": "", "encoding": "utf-8"},
→˓"headers": {"Connection": ["keep-alive"], "Accept-Encoding": ["gzip, deflate"],
→˓"Accept": ["*/*"], "User-Agent": ["python-requests/2.7.0 CPython/2.7.9 Darwin/14.1.0
→˓"]}, "method": "GET", "uri": "https://httpbin.org/get"}, "response": {"body": {
→˓"string": "{\n \"args\": {}, \n \"headers\": {\n \"Accept\": \"*/*\", \n \
→˓"Accept-Encoding\": \"gzip, deflate\", \n \"Host\": \"httpbin.org\", \n \
→˓"User-Agent\": \"python-requests/2.7.0 CPython/2.7.9 Darwin/14.1.0\"\n }, \n \
→˓"origin\": \"127.0.0.1\", \n \"url\": \"https://httpbin.org/get\"\n}\n", "encoding
→˓": null}, "headers": {"content-length": ["265"], "server": ["nginx"], "connection":
→˓["keep-alive"], "access-control-allow-credentials": ["true"], "date": ["Fri, 19 Jun
→˓2015 04:10:33 GMT"], "access-control-allow-origin": ["*"], "content-type": [
→˓"application/json"]}, "status": {"message": "OK", "code": 200}, "url": "https://
→˓httpbin.org/get"}, "recorded_at": "2015-06-19T04:10:33"}], "recorded_with":
→˓"betamax/0.4.1"}

10 Chapter 4. Contents of Betamax’s Documentation

Betamax Documentation, Release 0.8.2

Now, each subsequent time that we run that script, we will use the recorded interaction instead of talking to the internet
over and over again.

Note: There is no need to write any other code to replay your cassettes. Each time you run that session with the
cassette in place, Betamax does all the heavy lifting for you.

4.1.4 Recording More Complex Cassettes

Most times we cannot isolate our tests to a single request at a time, so we’ll have cassettes that make multiple requests.
Betamax can handle these with ease, let’s take a look at an example.

import betamax
from betamax_serializers import pretty_json
import requests

CASSETTE_LIBRARY_DIR = 'examples/cassettes/'

def main():
session = requests.Session()
betamax.Betamax.register_serializer(pretty_json.PrettyJSONSerializer)
recorder = betamax.Betamax(

session, cassette_library_dir=CASSETTE_LIBRARY_DIR
)

with recorder.use_cassette('more-complicated-cassettes',
serialize_with='prettyjson'):

session.get('https://httpbin.org/get')
session.post('https://httpbin.org/post',

params={'id': '20'},
json={'some-attribute': 'some-value'})

session.get('https://httpbin.org/get', params={'id': '20'})

if __name__ == '__main__':
main()

Before we run this example, we have to install a new package: betamax-serializers, e.g., pip install
betamax-serializers.

If we now run our new example, we’ll see a new file appear in our examples/cassettes/ directory named
more-complicated-cassettes.json. This cassette will be much larger as a result of making 3 requests
and receiving 3 responses. You’ll also notice that we imported betamax_serializers.pretty_json and
called register_serializer() with PrettyJSONSerializer. Then we added a keyword argument to
our invocation of use_cassette(), serialize_with='prettyjson'. PrettyJSONSerializer is a
class provided by the betamax-serializers package on PyPI that can serialize and deserialize cassette data into
JSON while allowing it to be easily human readable and pretty. Let’s see the results:

{
"http_interactions": [
{

"recorded_at": "2015-06-21T19:22:54",
"request": {

"body": {

(continues on next page)

4.1. Getting Started 11

Betamax Documentation, Release 0.8.2

(continued from previous page)

"encoding": "utf-8",
"string": ""

},
"headers": {
"Accept": [

"*/*"
],
"Accept-Encoding": [

"gzip, deflate"
],
"Connection": [

"keep-alive"
],
"User-Agent": [

"python-requests/2.7.0 CPython/2.7.9 Darwin/14.1.0"
]

},
"method": "GET",
"uri": "https://httpbin.org/get"

},
"response": {

"body": {
"encoding": null,
"string": "{\n \"args\": {}, \n \"headers\": {\n \"Accept\": \"*/*\",

→˓\n \"Accept-Encoding\": \"gzip, deflate\", \n \"Host\": \"httpbin.org\", \n
→˓ \"User-Agent\": \"python-requests/2.7.0 CPython/2.7.9 Darwin/14.1.0\"\n }, \n \
→˓"origin\": \"127.0.0.1\", \n \"url\": \"https://httpbin.org/get\"\n}\n"

},
"headers": {
"access-control-allow-credentials": [
"true"

],
"access-control-allow-origin": [

"*"
],
"connection": [
"keep-alive"

],
"content-length": [

"265"
],
"content-type": [

"application/json"
],
"date": [

"Sun, 21 Jun 2015 19:22:54 GMT"
],
"server": [

"nginx"
]

},
"status": {
"code": 200,
"message": "OK"

},
"url": "https://httpbin.org/get"

}
(continues on next page)

12 Chapter 4. Contents of Betamax’s Documentation

Betamax Documentation, Release 0.8.2

(continued from previous page)

},
{

"recorded_at": "2015-06-21T19:22:54",
"request": {

"body": {
"encoding": "utf-8",
"string": "{\"some-attribute\": \"some-value\"}"

},
"headers": {
"Accept": [
"*/*"

],
"Accept-Encoding": [

"gzip, deflate"
],
"Connection": [

"keep-alive"
],
"Content-Length": [

"32"
],
"Content-Type": [

"application/json"
],
"User-Agent": [

"python-requests/2.7.0 CPython/2.7.9 Darwin/14.1.0"
]

},
"method": "POST",
"uri": "https://httpbin.org/post?id=20"

},
"response": {

"body": {
"encoding": null,
"string": "{\n \"args\": {\n \"id\": \"20\"\n }, \n \"data\": \"{\\\

→˓"some-attribute\\\": \\\"some-value\\\"}\", \n \"files\": {}, \n \"form\": {}, \n
→˓ \"headers\": {\n \"Accept\": \"*/*\", \n \"Accept-Encoding\": \"gzip,
→˓deflate\", \n \"Content-Length\": \"32\", \n \"Content-Type\": \"application/
→˓json\", \n \"Host\": \"httpbin.org\", \n \"User-Agent\": \"python-requests/2.
→˓7.0 CPython/2.7.9 Darwin/14.1.0\"\n }, \n \"json\": {\n \"some-attribute\": \
→˓"some-value\"\n }, \n \"origin\": \"127.0.0.1\", \n \"url\": \"https://httpbin.
→˓org/post?id=20\"\n}\n"

},
"headers": {
"access-control-allow-credentials": [

"true"
],
"access-control-allow-origin": [

"*"
],
"connection": [
"keep-alive"

],
"content-length": [

"495"
],
"content-type": [

(continues on next page)

4.1. Getting Started 13

Betamax Documentation, Release 0.8.2

(continued from previous page)

"application/json"
],
"date": [

"Sun, 21 Jun 2015 19:22:54 GMT"
],
"server": [

"nginx"
]

},
"status": {
"code": 200,
"message": "OK"

},
"url": "https://httpbin.org/post?id=20"

}
},
{

"recorded_at": "2015-06-21T19:22:54",
"request": {

"body": {
"encoding": "utf-8",
"string": ""

},
"headers": {
"Accept": [

"*/*"
],
"Accept-Encoding": [

"gzip, deflate"
],
"Connection": [

"keep-alive"
],
"User-Agent": [

"python-requests/2.7.0 CPython/2.7.9 Darwin/14.1.0"
]

},
"method": "GET",
"uri": "https://httpbin.org/get?id=20"

},
"response": {

"body": {
"encoding": null,
"string": "{\n \"args\": {\n \"id\": \"20\"\n }, \n \"headers\": {\n

→˓ \"Accept\": \"*/*\", \n \"Accept-Encoding\": \"gzip, deflate\", \n \"Host\
→˓": \"httpbin.org\", \n \"User-Agent\": \"python-requests/2.7.0 CPython/2.7.9
→˓Darwin/14.1.0\"\n }, \n \"origin\": \"127.0.0.1\", \n \"url\": \"https://httpbin.
→˓org/get?id=20\"\n}\n"

},
"headers": {
"access-control-allow-credentials": [
"true"

],
"access-control-allow-origin": [

"*"
],
"connection": [

(continues on next page)

14 Chapter 4. Contents of Betamax’s Documentation

Betamax Documentation, Release 0.8.2

(continued from previous page)

"keep-alive"
],
"content-length": [

"289"
],
"content-type": [

"application/json"
],
"date": [

"Sun, 21 Jun 2015 19:22:54 GMT"
],
"server": [

"nginx"
]

},
"status": {
"code": 200,
"message": "OK"

},
"url": "https://httpbin.org/get?id=20"

}
}

],
"recorded_with": "betamax/0.4.2"

}

This makes the cassette easy to read and helps us recognize that requests and responses are paired together. We’ll
explore cassettes more a bit later.

4.2 Long Term Usage Patterns

Now that we’ve covered the basics in Getting Started, let’s look at some patterns and problems we might encounter
when using Betamax over a period of months instead of minutes.

4.2.1 Adding New Requests to a Cassette

Let’s reuse an example. Specifically let’s reuse our examples/more_complicated_cassettes.py example.

import betamax
from betamax_serializers import pretty_json
import requests

CASSETTE_LIBRARY_DIR = 'examples/cassettes/'

def main():
session = requests.Session()
betamax.Betamax.register_serializer(pretty_json.PrettyJSONSerializer)
recorder = betamax.Betamax(

session, cassette_library_dir=CASSETTE_LIBRARY_DIR
)

with recorder.use_cassette('more-complicated-cassettes',

(continues on next page)

4.2. Long Term Usage Patterns 15

Betamax Documentation, Release 0.8.2

(continued from previous page)

serialize_with='prettyjson'):
session.get('https://httpbin.org/get')
session.post('https://httpbin.org/post',

params={'id': '20'},
json={'some-attribute': 'some-value'})

session.get('https://httpbin.org/get', params={'id': '20'})

if __name__ == '__main__':
main()

Let’s add a new POST request in there:

session.post('https://httpbin.org/post',
params={'id': '20'},
json={'some-other-attribute': 'some-other-value'})

If we run this cassette now, we should expect to see that there was an exception because Betamax couldn’t find a
matching request for it. We expect this because the post requests have two completely different bodies, right? Right.
The problem you’ll find is that by default Betamax only matches on the URI and the Method. So Betamax will find
a matching request/response pair for ("POST", "https://httpbin.org/post?id=20") and reuse it. So
now we need to update how we use Betamax so it will match using the body as well:

import betamax
from betamax_serializers import pretty_json
import requests

CASSETTE_LIBRARY_DIR = 'examples/cassettes/'

def main():
session = requests.Session()
betamax.Betamax.register_serializer(pretty_json.PrettyJSONSerializer)
recorder = betamax.Betamax(

session, cassette_library_dir=CASSETTE_LIBRARY_DIR
)
matchers = ['method', 'uri', 'body']

with recorder.use_cassette('more-complicated-cassettes',
serialize_with='prettyjson',
match_requests_on=matchers):

session.get('https://httpbin.org/get')
session.post('https://httpbin.org/post',

params={'id': '20'},
json={'some-attribute': 'some-value'})

session.get('https://httpbin.org/get', params={'id': '20'})
session.post('https://httpbin.org/post',

params={'id': '20'},
json={'some-other-attribute': 'some-other-value'})

if __name__ == '__main__':
main()

Now when we run that we should see something like this:

16 Chapter 4. Contents of Betamax’s Documentation

Betamax Documentation, Release 0.8.2

Traceback (most recent call last):
File "examples/more_complicated_cassettes_2.py", line 30, in <module>
main()

File "examples/more_complicated_cassettes_2.py", line 26, in main
json={'some-other-attribute': 'some-other-value'})

File ".../lib/python2.7/site-packages/requests/sessions.py", line 508, in post
return self.request('POST', url, data=data, json=json, **kwargs)

File ".../lib/python2.7/site-packages/requests/sessions.py", line 465, in request
resp = self.send(prep, **send_kwargs)

File ".../lib/python2.7/site-packages/requests/sessions.py", line 573, in send
r = adapter.send(request, **kwargs)

File ".../lib/python2.7/site-packages/betamax/adapter.py", line 91, in send
self.cassette))

betamax.exceptions.BetamaxError: A request was made that could not be handled.

A request was made to https://httpbin.org/post?id=20 that could not be found in more-
→˓complicated-cassettes.

The settings on the cassette are:

- record_mode: once
- match_options ['method', 'uri', 'body'].

This is what we do expect to see. So, how do we fix it?

We have a few options to fix it.

Option 1: Re-recording the Cassette

One of the easiest ways to fix this situation is to simply remove the cassette that was recorded and run the script again.
This will recreate the cassette and subsequent runs will work just fine.

To be clear, we’re advocating for this option that the user do:

$ rm examples/cassettes/{{ cassette-name }}

This is the favorable option if you don’t foresee yourself needing to add new interactions often.

Option 2: Changing the Record Mode

A different way would be to update the recording mode used by Betamax. We would update the line in our file that
currently reads:

with recorder.use_cassette('more-complicated-cassettes',
serialize_with='prettyjson',
match_requests_on=matchers):

to add one more parameter to the call to use_cassette(). We want to use the record parameter to tell Betamax
to use either the new_episodes or all modes. Which you choose depends on your use case.

new_episodes will only record new request/response interactions that Betamax sees. all will just re-record every
interaction every time. In our example, we’ll use new_episodes so our code now looks like:

with recorder.use_cassette('more-complicated-cassettes',
serialize_with='prettyjson',

(continues on next page)

4.2. Long Term Usage Patterns 17

Betamax Documentation, Release 0.8.2

(continued from previous page)

match_requests_on=matchers,
record='new_episodes'):

4.2.2 Known Issues

Tests Periodically Slow Down

Description:

Requests checks if it should use or bypass proxies using the standard library function proxy_bypass. This has been
known to cause slow downs when using Requests and can cause your recorded requests to slow down as well.

Betamax presently has no way to prevent this from being called as it operates at a lower level in Requests than is
necessary.

Workarounds:

• Mock gethostbyname method from socket library, to force a localhost setting, e.g.,

import socket
socket.gethostbyname = lambda x: '127.0.0.1'

• Set trust_env to False on the session used with Betamax. This will prevent Requests from checking for
proxies and whether it needs bypass them.

Related bugs:

• https://github.com/sigmavirus24/betamax/issues/96

• https://github.com/kennethreitz/requests/issues/2988

4.3 Configuring Betamax

By now you’ve seen examples where we pass a great deal of keyword arguments to use_cassette(). You have
also seen that we used betamax.Betamax.configure(). In this section, we’ll go into a deep description of the
different approaches and why you might pick one over the other.

4.3.1 Global Configuration

Admittedly, I am not too proud of my decision to borrow this design from VCR, but I did and I use it and it isn’t
entirely terrible. (Note: I do hope to come up with an elegant way to redesign it for v1.0.0 but that’s a long way off.)

The best way to configure Betamax globally is by using betamax.Betamax.configure(). This returns a
betamax.configure.Configuration instance. This instance can be used as a context manager in order to
make the usage look more like VCR’s way of configuring the library. For example, in VCR, you might do

VCR.configure do |config|
config.cassette_library_dir = 'examples/cassettes'
config.default_cassette_options[:record] = :none
...

end

Where as with Betamax you might do

18 Chapter 4. Contents of Betamax’s Documentation

https://github.com/sigmavirus24/betamax/issues/96
https://github.com/kennethreitz/requests/issues/2988
https://relishapp.com/vcr/vcr
https://relishapp.com/vcr/vcr
https://relishapp.com/vcr/vcr

Betamax Documentation, Release 0.8.2

from betamax import Betamax

with Betamax.configure() as config:
config.cassette_library_dir = 'examples/cassettes'
config.default_cassette_options['record_mode'] = 'none'

Alternatively, since the object returned is really just an object and does not do anything special as a context manager,
you could just as easily do

from betamax import Betamax

config = Betamax.configure()
config.cassette_library_dir = 'examples/cassettes'
config.default_cassette_options['record_mode'] = 'none'

We’ll now move on to specific use-cases when configuring Betamax. We’ll exclude the portion of each example where
we create a Configuration instance.

Setting the Directory in which Betamax Should Store Cassette Files

Each and every time we use Betamax we need to tell it where to store (and discover) cassette files. By default we do
this by setting the cassette_library_dir attribute on our config object, e.g.,

config.cassette_library_dir = 'tests/integration/cassettes'

Note that these paths are relative to what Python thinks is the current working directory. Wherever you run your tests
from, write the path to be relative to that directory.

Setting Default Cassette Options

Cassettes have default options used by Betamax if none are set. For example,

• The default record mode is once.

• The default matchers used are method and uri.

• Cassettes do not preserve the exact body bytes by default.

These can all be configured as you please. For example, if you want to change the default matchers and preserve exact
body bytes, you would do

config.default_cassette_options['match_requests_on'] = [
'method',
'uri',
'headers',

]
config.preserve_exact_body_bytes = True

Filtering Sensitive Data

It’s unlikely that you’ll want to record an interaction that will not require authentication. For this we can define
placeholders in our cassettes. Let’s use a very real example.

Let’s say that you want to get your user data from GitHub using Requests. You might have code that looks like this:

4.3. Configuring Betamax 19

Betamax Documentation, Release 0.8.2

def me(username, password, session):
r = session.get('https://api.github.com/user', auth=(username, password))
r.raise_for_status()
return r.json()

You would test this something like:

import os

import betamax
import requests

from my_module import me

session = requests.Session()
recorder = betamax.Betamax(session)
username = os.environ.get('USERNAME', 'testuser')
password = os.environ.get('PASSWORD', 'testpassword')

with recorder.use_cassette('test-me'):
json = me(username, password, session)
assertions about the JSON returned

The problem is that now your username and password will be recorded in the cassette which you don’t then want to
push to your version control. How can we prevent that from happening?

import base64

username = os.environ.get('USERNAME', 'testuser')
password = os.environ.get('PASSWORD', 'testpassword')
config.define_cassette_placeholder(

'<GITHUB-AUTH>',
base64.b64encode(

'{0}:{1}'.format(username, password).encode('utf-8')
)

)

Note: Obviously you can refactor this a bit so you can pull those environment variables out in only one place, but I’d
rather be clear than not here.

The first time you run the test script you would invoke your tests like so:

$ USERNAME='my-real-username' PASSWORD='supersecretep@55w0rd' \
python test_script.py

Future runs of the script could simply be run without those environment variables, e.g.,

$ python test_script.py

This means that you can run these tests on a service like Travis-CI without providing credentials.

In the event that you can not anticipate what you will need to filter out, version 0.7.0 of Betamax adds
before_record and before_playback hooks. These two hooks both will pass the Interaction and
Cassette to the function provided. An example callback would look like:

20 Chapter 4. Contents of Betamax’s Documentation

Betamax Documentation, Release 0.8.2

def hook(interaction, cassette):
pass

You would then register this callback:

Either
config.before_record(callback=hook)
Or
config.before_playback(callback=hook)

You can register callables for both hooks. If you wish to ignore an interaction and prevent it from being recorded or
replayed, you can call the ignore(). You also have full access to all of the methods and attributes on an instance
of an Interaction. This will allow you to inspect the response produced by the interaction and then modify it. Let’s
say, for example, that you are talking to an API that grants authorization tokens on a specific request. In this example,
you might authenticate initially using a username and password and then use a token after authenticating. You want,
however, for the token to be kept secret. In that case you might configure Betamax to replace the username and
password, e.g.,

config.define_cassette_placeholder('<USERNAME>', username)
config.define_cassette_placeholder('<PASSWORD>', password)

And you would also write a function that, prior to recording, finds the token, saves it, and obscures it from the recorded
version of the cassette:

from betamax.cassette import cassette

def sanitize_token(interaction, current_cassette):
Exit early if the request did not return 200 OK because that's the
only time we want to look for Authorization-Token headers
if interaction.data['response']['status']['code'] != 200:

return

headers = interaction.data['response']['headers']
token = headers.get('Authorization-Token')
If there was no token header in the response, exit
if token is None:

return

Otherwise, create a new placeholder so that when cassette is saved,
Betamax will replace the token with our placeholder.
current_cassette.placeholders.append(

cassette.Placeholder(placeholder='<AUTH_TOKEN>', replace=token)
)

This will dynamically create a placeholder for that cassette only. Once we have our hook, we need merely register it
like so:

config.before_record(callback=sanitize_token)

And we no longer need to worry about leaking sensitive data.

In addition to the before_record and before_playback hooks, version 0.9.0 of Betamax adds
after_start() and before_stop() hooks. These two hooks both will pass the current Cassette to the
callback function provided. Register these hooks like so:

4.3. Configuring Betamax 21

Betamax Documentation, Release 0.8.2

def hook(cassette):
if cassette.is_recording():

print("This cassette is recording!")

Either
config.after_start(callback=hook)
Or
config.before_stop(callback=hook)

These hooks are useful for performing configuration actions external to Betamax at the time Betamax is invoked, such
as setting up correct authentication to an API so that the recording will not encounter any errors.

Setting default serializer

If you want to use a specific serializer for every cassette, you can set serialize_with as a default cassette option.
For example, if you wanted to use the prettyjson serializer for every cassette you would do:

config.default_cassette_options['serialize_with'] = 'prettyjson'

4.3.2 Per-Use Configuration

Each time you create a Betamax instance or use use_cassette(), you can pass some of the options from above.

Setting the Directory in which Betamax Should Store Cassette Files

When using per-use configuration of Betamax, you can specify the cassette directory when you instantiate a Betamax
object:

session = requests.Session()
recorder = betamax.Betamax(session,

cassette_library_dir='tests/cassettes/')

Setting Default Cassette Options

You can also set default cassette options when instantiating a Betamax object:

session = requests.Session()
recorder = betamax.Betamax(session, default_cassette_options={

'record_mode': 'once',
'match_requests_on': ['method', 'uri', 'headers'],
'preserve_exact_body_bytes': True

})

You can also set the above when calling use_cassette():

session = requests.Session()
recorder = betamax.Betamax(session)
with recorder.use_cassette('cassette-name',

preserve_exact_body_bytes=True,
match_requests_on=['method', 'uri', 'headers'],
record='once'):

session.get('https://httpbin.org/get')

22 Chapter 4. Contents of Betamax’s Documentation

Betamax Documentation, Release 0.8.2

Filtering Sensitive Data

Filtering sensitive data on a per-usage basis is the only difficult (or perhaps, less convenient) case. Cassette placehold-
ers are part of the default cassette options, so we’ll set this value similarly to how we set the other default cassette
options, the catch is that placeholders have a specific structure. Placeholders are stored as a list of dictionaries. Let’s
use our example above and convert it.

import base64

username = os.environ.get('USERNAME', 'testuser')
password = os.environ.get('PASSWORD', 'testpassword')
session = requests.Session()

recorder = betamax.Betamax(session, default_cassette_options={
'placeholders': [{

'placeholder': '<GITHUB-AUTH>',
'replace': base64.b64encode(

'{0}:{1}'.format(username, password).encode('utf-8')
),

}]
})

Note that what we passed as our first argument is assigned to the 'placeholder' key while the value we’re
replacing is assigned to the 'replace' key.

This isn’t the typical way that people filter sensitive data because they tend to want to do it globally.

4.3.3 Mixing and Matching

It’s not uncommon to mix and match configuration methodologies. I do this in github3.py. I use global configuration
to filter sensitive data and set defaults based on the environment the tests are running in. On Travis-CI, the record
mode is set to 'none'. I also set how we match requests and when we preserve exact body bytes on a per-use basis.

4.4 Record Modes

Betamax, like VCR, has four modes that it can use to record cassettes:

• 'all'

• 'new_episodes'

• 'none'

• 'once'

You can only ever use one record mode. Below are explanations and examples of each record mode. The explanations
are blatantly taken from VCR’s own Record Modes documentation.

4.4.1 All

The 'all' record mode will:

• Record new interactions.

• Never replay previously recorded interactions.

4.4. Record Modes 23

https://github.com/sigmavirus24/github3.py
https://relishapp.com/vcr/vcr
https://relishapp.com/vcr/vcr/v/2-9-3/docs/record-modes/

Betamax Documentation, Release 0.8.2

This can be temporarily used to force VCR to re-record a cassette (i.e., to ensure the responses are not out of date) or
can be used when you simply want to log all HTTP requests.

Given our file, examples/record_modes/all/example.py,

import betamax
import requests

CASSETTE_LIBRARY_DIR = 'examples/record_modes/all/'

def main():
session = requests.Session()
recorder = betamax.Betamax(

session, cassette_library_dir=CASSETTE_LIBRARY_DIR
)

with recorder.use_cassette('all-example', record='all'):
session.get('https://httpbin.org/get')
session.post('https://httpbin.org/post',

params={'id': '20'},
json={'some-attribute': 'some-value'})

session.get('https://httpbin.org/get', params={'id': '20'})

if __name__ == '__main__':
main()

Every time we run it, our cassette (examples/record_modes/all/all-example.json) will be updated
with new values.

4.4.2 New Episodes

The 'new_episodes' record mode will:

• Record new interactions.

• Replay previously recorded interactions.

It is similar to the 'once' record mode, but will always record new interactions, even if you have an existing recorded
one that is similar (but not identical, based on the :match_request_on option).

Given our file, examples/record_modes/new_episodes/example_original.py, with which we have
already recorded examples/record_modes/new_episodes/new-episodes-example.json

import betamax
import requests

CASSETTE_LIBRARY_DIR = 'examples/record_modes/new_episodes/'

def main():
session = requests.Session()
recorder = betamax.Betamax(

session, cassette_library_dir=CASSETTE_LIBRARY_DIR
)

with recorder.use_cassette('new-episodes-example', record='new_episodes'):

(continues on next page)

24 Chapter 4. Contents of Betamax’s Documentation

Betamax Documentation, Release 0.8.2

(continued from previous page)

session.get('https://httpbin.org/get')
session.post('https://httpbin.org/post',

params={'id': '20'},
json={'some-attribute': 'some-value'})

session.get('https://httpbin.org/get', params={'id': '20'})

if __name__ == '__main__':
main()

If we then run examples/record_modes/new_episodes/example_updated.py

import betamax
import requests

CASSETTE_LIBRARY_DIR = 'examples/record_modes/new_episodes/'

def main():
session = requests.Session()
recorder = betamax.Betamax(

session, cassette_library_dir=CASSETTE_LIBRARY_DIR
)

with recorder.use_cassette('new-episodes-example', record='new_episodes'):
session.get('https://httpbin.org/get')
session.post('https://httpbin.org/post',

params={'id': '20'},
json={'some-attribute': 'some-value'})

session.get('https://httpbin.org/get', params={'id': '20'})
session.get('https://httpbin.org/get', params={'id': '40'})

if __name__ == '__main__':
main()

The new request at the end of the file will be added to the cassette without updating the other interactions that were
already recorded.

4.4.3 None

The 'none' record mode will:

• Replay previously recorded interactions.

• Cause an error to be raised for any new requests.

This is useful when your code makes potentially dangerous HTTP requests. The 'none' record mode guarantees
that no new HTTP requests will be made.

Given our file, examples/record_modes/none/example_original.py, with a cassette that already has
interactions recorded in examples/record_modes/none/none-example.json

import betamax
import requests

(continues on next page)

4.4. Record Modes 25

Betamax Documentation, Release 0.8.2

(continued from previous page)

CASSETTE_LIBRARY_DIR = 'examples/record_modes/none/'

def main():
session = requests.Session()
recorder = betamax.Betamax(

session, cassette_library_dir=CASSETTE_LIBRARY_DIR
)

with recorder.use_cassette('none-example', record='none'):
session.get('https://httpbin.org/get')
session.post('https://httpbin.org/post',

params={'id': '20'},
json={'some-attribute': 'some-value'})

session.get('https://httpbin.org/get', params={'id': '20'})

if __name__ == '__main__':
main()

If we then run examples/record_modes/none/example_updated.py

import betamax
import requests

CASSETTE_LIBRARY_DIR = 'examples/record_modes/none/'

def main():
session = requests.Session()
recorder = betamax.Betamax(

session, cassette_library_dir=CASSETTE_LIBRARY_DIR
)

with recorder.use_cassette('none-example', record='none'):
session.get('https://httpbin.org/get')
session.post('https://httpbin.org/post',

params={'id': '20'},
json={'some-attribute': 'some-value'})

session.get('https://httpbin.org/get', params={'id': '20'})
session.get('https://httpbin.org/get', params={'id': '40'})

if __name__ == '__main__':
main()

We’ll see an exception indicating that new interactions were prevented:

Traceback (most recent call last):
File "examples/record_modes/none/example_updated.py", line 23, in <module>
main()

File "examples/record_modes/none/example_updated.py", line 19, in main
session.get('https://httpbin.org/get', params={'id': '40'})

File "/usr/local/lib/python2.7/site-packages/requests/sessions.py", line 477, in get
return self.request('GET', url, **kwargs)

File "/usr/local/lib/python2.7/site-packages/requests/sessions.py", line 465, in
→˓request

(continues on next page)

26 Chapter 4. Contents of Betamax’s Documentation

Betamax Documentation, Release 0.8.2

(continued from previous page)

resp = self.send(prep, **send_kwargs)
File "/usr/local/lib/python2.7/site-packages/requests/sessions.py", line 573, in

→˓send
r = adapter.send(request, **kwargs)

File "/usr/local/lib/python2.7/site-packages/betamax/adapter.py", line 91, in send
self.cassette))

betamax.exceptions.BetamaxError: A request was made that could not be handled.

A request was made to https://httpbin.org/get?id=40 that could not be found in none-
→˓example.

The settings on the cassette are:

- record_mode: none
- match_options ['method', 'uri'].

4.4.4 Once

The 'once' record mode will:

• Replay previously recorded interactions.

• Record new interactions if there is no cassette file.

• Cause an error to be raised for new requests if there is a cassette file.

It is similar to the 'new_episodes' record mode, but will prevent new, unexpected requests from being made (i.e.
because the request URI changed or whatever).

'once' is the default record mode, used when you do not set one.

If we have a file, examples/record_modes/once/example_original.py,

import betamax
import requests

CASSETTE_LIBRARY_DIR = 'examples/record_modes/once/'

def main():
session = requests.Session()
recorder = betamax.Betamax(

session, cassette_library_dir=CASSETTE_LIBRARY_DIR
)

with recorder.use_cassette('once-example', record='once'):
session.get('https://httpbin.org/get')
session.post('https://httpbin.org/post',

params={'id': '20'},
json={'some-attribute': 'some-value'})

session.get('https://httpbin.org/get', params={'id': '20'})

if __name__ == '__main__':
main()

And we run it, we’ll see a cassette named examples/record_modes/once/once-example.json has been
created.

4.4. Record Modes 27

Betamax Documentation, Release 0.8.2

If we then run examples/record_modes/once/example_updated.py,

import betamax
import requests

CASSETTE_LIBRARY_DIR = 'examples/record_modes/once/'

def main():
session = requests.Session()
recorder = betamax.Betamax(

session, cassette_library_dir=CASSETTE_LIBRARY_DIR
)

with recorder.use_cassette('once-example', record='once'):
session.get('https://httpbin.org/get')
session.post('https://httpbin.org/post',

params={'id': '20'},
json={'some-attribute': 'some-value'})

session.get('https://httpbin.org/get', params={'id': '20'})
session.get('https://httpbin.org/get', params={'id': '40'})

if __name__ == '__main__':
main()

We’ll see an exception similar to the one we see when using the 'none' record mode.

Traceback (most recent call last):
File "examples/record_modes/once/example_updated.py", line 23, in <module>
main()

File "examples/record_modes/once/example_updated.py", line 19, in main
session.get('https://httpbin.org/get', params={'id': '40'})

File "/usr/local/lib/python2.7/site-packages/requests/sessions.py", line 477, in get
return self.request('GET', url, **kwargs)

File "/usr/local/lib/python2.7/site-packages/requests/sessions.py", line 465, in
→˓request

resp = self.send(prep, **send_kwargs)
File "/usr/local/lib/python2.7/site-packages/requests/sessions.py", line 573, in

→˓send
r = adapter.send(request, **kwargs)

File "/usr/local/lib/python2.7/site-packages/betamax/adapter.py", line 91, in send
self.cassette))

betamax.exceptions.BetamaxError: A request was made that could not be handled.

A request was made to https://httpbin.org/get?id=40 that could not be found in none-
→˓example.

The settings on the cassette are:

- record_mode: once
- match_options ['method', 'uri'].

28 Chapter 4. Contents of Betamax’s Documentation

Betamax Documentation, Release 0.8.2

4.5 Third-Party Packages

Betamax was created to be a very close imitation of VCR. As such, it has the default set of request matchers and a
subset of the supported cassette serializers for VCR.

As part of my own usage of Betamax, and supporting other people’s usage of Betamax, I’ve created (and maintain)
two third party packages that provide extra request matchers and cassette serializers.

• betamax-matchers

• betamax-serializers

For simplicity, those modules will be documented here instead of on their own documentation sites.

4.5.1 Request Matchers

There are three third-party request matchers provided by the betamax-matchers package:

• URLEncodedBodyMatcher, 'form-urlencoded-body'

• JSONBodyMatcher, 'json-body'

• MultipartFormDataBodyMatcher, 'multipart-form-data-body'

In order to use any of these we have to register them with Betamax. Below we will register all three but you do not
need to do that if you only need to use one:

import betamax
from betamax_matchers import form_urlencoded
from betamax_matchers import json_body
from betamax_matchers import multipart

betamax.Betamax.register_request_matcher(
form_urlencoded.URLEncodedBodyMatcher
)

betamax.Betamax.register_request_matcher(
json_body.JSONBodyMatcher
)

betamax.Betamax.register_request_matcher(
multipart.MultipartFormDataBodyMatcher
)

All of these classes inherit from betamax.BaseMatcher which means that each needs a name that will be used
when specifying what matchers to use with Betamax. I have noted those next to the class name for each matcher
above. Let’s use the JSON body matcher in an example though:

import betamax
from betamax_matchers import json_body
This example requires at least requests 2.5.0
import requests

betamax.Betamax.register_request_matcher(
json_body.JSONBodyMatcher
)

def main():
session = requests.Session()

(continues on next page)

4.5. Third-Party Packages 29

https://relishapp.com/vcr/vcr
https://pypi.python.org/pypi/betamax-matchers
https://pypi.python.org/pypi/betamax-serializers
https://pypi.python.org/pypi/betamax-matchers

Betamax Documentation, Release 0.8.2

(continued from previous page)

recorder = betamax.Betamax(session, cassette_library_dir='.')
url = 'https://httpbin.org/post'
json_data = {'key': 'value',

'other-key': 'other-value',
'yet-another-key': 'yet-another-value'}

matchers = ['method', 'uri', 'json-body']

with recorder.use_cassette('json-body-example', match_requests_on=matchers):
r = session.post(url, json=json_data)

if __name__ == '__main__':
main()

If we ran that request without those matcher with hash seed randomization, then we would occasionally receive ex-
ceptions that a request could not be matched. That is because dictionaries are not inherently ordered so the body string
of the request can change and be any of the following:

{"key": "value", "other-key": "other-value", "yet-another-key":
"yet-another-value"}

{"key": "value", "yet-another-key": "yet-another-value", "other-key":
"other-value"}

{"other-key": "other-value", "yet-another-key": "yet-another-value",
"key": "value"}

{"yet-another-key": "yet-another-value", "key": "value", "other-key":
"other-value"}

{"yet-another-key": "yet-another-value", "other-key": "other-value",
"key": "value"}

{"other-key": "other-value", "key": "value", "yet-another-key":
"yet-another-value"}

But using the 'json-body' matcher, the matcher will parse the request and compare python dictionaries instead
of python strings. That will completely bypass the issues introduced by hash randomization. I use this matcher
extensively in github3.py’s tests.

4.5.2 Cassette Serializers

By default, Betamax only comes with the JSON serializer. betamax-serializers provides extra serializer classes that
users have contributed.

For example, as we’ve seen elsewhere in our documentation, the default JSON serializer does not create beautiful or
easy to read cassettes. As a substitute for that, we have the PrettyJSONSerializer that does that for you.

from betamax import Betamax
from betamax_serializers import pretty_json

import requests

(continues on next page)

30 Chapter 4. Contents of Betamax’s Documentation

https://github.com/sigmavirus24/github3.py
https://pypi.python.org/pypi/betamax-serializers

Betamax Documentation, Release 0.8.2

(continued from previous page)

Betamax.register_serializer(pretty_json.PrettyJSONSerializer)

session = requests.Session()
recorder = Betamax(session)
with recorder.use_cassette('testpretty', serialize_with='prettyjson'):

session.request(method=method, url=url, ...)

This will give us a pretty-printed cassette like:

{
"http_interactions": [
{

"recorded_at": "2015-06-21T19:22:54",
"request": {

"body": {
"encoding": "utf-8",
"string": ""

},
"headers": {
"Accept": [

"*/*"
],
"Accept-Encoding": [

"gzip, deflate"
],
"Connection": [

"keep-alive"
],
"User-Agent": [

"python-requests/2.7.0 CPython/2.7.9 Darwin/14.1.0"
]

},
"method": "GET",
"uri": "https://httpbin.org/get"

},
"response": {

"body": {
"encoding": null,
"string": "{\n \"args\": {}, \n \"headers\": {\n \"Accept\": \"*/*\",

→˓\n \"Accept-Encoding\": \"gzip, deflate\", \n \"Host\": \"httpbin.org\", \n
→˓ \"User-Agent\": \"python-requests/2.7.0 CPython/2.7.9 Darwin/14.1.0\"\n }, \n \
→˓"origin\": \"127.0.0.1\", \n \"url\": \"https://httpbin.org/get\"\n}\n"

},
"headers": {
"access-control-allow-credentials": [
"true"

],
"access-control-allow-origin": [

"*"
],
"connection": [
"keep-alive"

],
"content-length": [

"265"
],
"content-type": [

(continues on next page)

4.5. Third-Party Packages 31

Betamax Documentation, Release 0.8.2

(continued from previous page)

"application/json"
],
"date": [

"Sun, 21 Jun 2015 19:22:54 GMT"
],
"server": [

"nginx"
]

},
"status": {
"code": 200,
"message": "OK"

},
"url": "https://httpbin.org/get"

}
},
{

"recorded_at": "2015-06-21T19:22:54",
"request": {

"body": {
"encoding": "utf-8",
"string": "{\"some-attribute\": \"some-value\"}"

},
"headers": {
"Accept": [

"*/*"
],
"Accept-Encoding": [

"gzip, deflate"
],
"Connection": [

"keep-alive"
],
"Content-Length": [

"32"
],
"Content-Type": [

"application/json"
],
"User-Agent": [

"python-requests/2.7.0 CPython/2.7.9 Darwin/14.1.0"
]

},
"method": "POST",
"uri": "https://httpbin.org/post?id=20"

},
"response": {

"body": {
"encoding": null,
"string": "{\n \"args\": {\n \"id\": \"20\"\n }, \n \"data\": \"{\\\

→˓"some-attribute\\\": \\\"some-value\\\"}\", \n \"files\": {}, \n \"form\": {}, \n
→˓ \"headers\": {\n \"Accept\": \"*/*\", \n \"Accept-Encoding\": \"gzip,
→˓deflate\", \n \"Content-Length\": \"32\", \n \"Content-Type\": \"application/
→˓json\", \n \"Host\": \"httpbin.org\", \n \"User-Agent\": \"python-requests/2.
→˓7.0 CPython/2.7.9 Darwin/14.1.0\"\n }, \n \"json\": {\n \"some-attribute\": \
→˓"some-value\"\n }, \n \"origin\": \"127.0.0.1\", \n \"url\": \"https://httpbin.
→˓org/post?id=20\"\n}\n"

(continues on next page)

32 Chapter 4. Contents of Betamax’s Documentation

Betamax Documentation, Release 0.8.2

(continued from previous page)

},
"headers": {
"access-control-allow-credentials": [
"true"

],
"access-control-allow-origin": [

"*"
],
"connection": [
"keep-alive"

],
"content-length": [

"495"
],
"content-type": [

"application/json"
],
"date": [

"Sun, 21 Jun 2015 19:22:54 GMT"
],
"server": [

"nginx"
]

},
"status": {
"code": 200,
"message": "OK"

},
"url": "https://httpbin.org/post?id=20"

}
},
{

"recorded_at": "2015-06-21T19:22:54",
"request": {

"body": {
"encoding": "utf-8",
"string": ""

},
"headers": {
"Accept": [

"*/*"
],
"Accept-Encoding": [

"gzip, deflate"
],
"Connection": [

"keep-alive"
],
"User-Agent": [

"python-requests/2.7.0 CPython/2.7.9 Darwin/14.1.0"
]

},
"method": "GET",
"uri": "https://httpbin.org/get?id=20"

},
"response": {

"body": {
(continues on next page)

4.5. Third-Party Packages 33

Betamax Documentation, Release 0.8.2

(continued from previous page)

"encoding": null,
"string": "{\n \"args\": {\n \"id\": \"20\"\n }, \n \"headers\": {\n

→˓ \"Accept\": \"*/*\", \n \"Accept-Encoding\": \"gzip, deflate\", \n \"Host\
→˓": \"httpbin.org\", \n \"User-Agent\": \"python-requests/2.7.0 CPython/2.7.9
→˓Darwin/14.1.0\"\n }, \n \"origin\": \"127.0.0.1\", \n \"url\": \"https://httpbin.
→˓org/get?id=20\"\n}\n"

},
"headers": {
"access-control-allow-credentials": [
"true"

],
"access-control-allow-origin": [

"*"
],
"connection": [
"keep-alive"

],
"content-length": [

"289"
],
"content-type": [

"application/json"
],
"date": [

"Sun, 21 Jun 2015 19:22:54 GMT"
],
"server": [

"nginx"
]

},
"status": {
"code": 200,
"message": "OK"

},
"url": "https://httpbin.org/get?id=20"

}
}

],
"recorded_with": "betamax/0.4.2"

}

4.6 Usage Patterns

Below are suggested patterns for using Betamax efficiently.

4.6.1 Configuring Betamax in py.test’s conftest.py

Betamax and github3.py (the project which instigated the creation of Betamax) both utilize py.test and its feature of
configuring how the tests run with conftest.py1. One pattern that I have found useful is to include this in your
conftest.py file:

1 http://pytest.org/latest/plugins.html

34 Chapter 4. Contents of Betamax’s Documentation

http://pytest.org/latest/
http://pytest.org/latest/plugins.html

Betamax Documentation, Release 0.8.2

import betamax

with betamax.Betamax.configure() as config:
config.cassette_library_dir = 'tests/cassettes/'

This configures your cassette directory for all of your tests. If you do not check your cassettes into your version control
system, then you can also add:

import os

if not os.path.exists('tests/cassettes'):
os.makedirs('tests/cassettes')

An Example from github3.py

You can configure other aspects of Betamax via the conftest.py file. For example, in github3.py, I do the follow-
ing:

import os

record_mode = 'none' if os.environ.get('TRAVIS_GH3') else 'once'

with betamax.Betamax.configure() as config:
config.cassette_library_dir = 'tests/cassettes/'
config.default_cassette_options['record_mode'] = record_mode
config.define_cassette_placeholder(

'<AUTH_TOKEN>',
os.environ.get('GH_AUTH', 'x' * 20)

)

In essence, if the tests are being run on Travis CI, then we want to make sure to not try to record new cassettes or
interactions. We also, want to ensure we’re authenticated when possible but that we do not leave our placeholder in
the cassettes when they’re replayed.

4.6.2 Using Human Readable JSON Cassettes

Using the PrettyJSONSerializer provided by the betamax_serializers package provides human read-
able JSON cassettes. Cassettes output in this way make it easy to compare modifications to cassettes to ensure only
expected changes are introduced.

While you can use the serialize_with option when creating each individual cassette, it is simpler to
provide this setting globally. The following example demonstrates how to configure Betamax to use the
PrettyJSONSerializer for all newly created cassettes:

from betamax_serializers import pretty_json
betamax.Betamax.register_serializer(pretty_json.PrettyJSONSerializer)
...
config.default_cassette_options['serialize_with'] = 'prettyjson'

Updating Existing Betamax Cassettes to be Human Readable

If you already have a library of cassettes when applying the previous configuration update, then you will probably
want to also update all your existing cassettes into the new human readable format. The following script will help you

4.6. Usage Patterns 35

https://travis-ci.org/

Betamax Documentation, Release 0.8.2

transform your existing cassettes:

import os
import glob
import json
import sys

try:
cassette_dir = sys.argv[1]
cassettes = glob.glob(os.path.join(cassette_dir, '*.json'))

except:
print('Usage: {0} CASSETTE_DIRECTORY'.format(sys.argv[0]))
sys.exit(1)

for cassette_path in cassettes:
with open(cassette_path, 'r') as fp:

data = json.load(fp)
with open(cassette_path, 'w') as fp:

json.dump(data, fp, sort_keys=True, indent=2,
separators=(',', ': '))

print('Updated {0} cassette{1}.'.format(
len(cassettes), '' if len(cassettes) == 1 else 's'))

Copy and save the above script as fix_cassettes.py and then run it like:

python fix_cassettes.py PATH_TO_CASSETTE_DIRECTORY

If you’re not already using a version control system (e.g., git, svn) then it is recommended you make a backup of your
cassettes first in the event something goes wrong.

4.7 Integrating Betamax with Test Frameworks

It’s nice to have a way to integrate libraries you use for testing into your testing frameworks. Having considered this,
the authors of and contributors to Betamax have included integrations in the package. Betamax comes with integrations
for py.test and unittest. (If you need an integration for another framework, please suggest it and send a patch!)

4.7.1 PyTest Integration

New in version 0.5.0.

Changed in version 0.6.0.

When you install Betamax, it now installs two py.test fixtures by default. To use it in your tests you need only follow
the instructions on pytest’s documentation. To use the betamax_session fixture for an entire class of tests you
would do:

tests/test_http_integration.py
import pytest

@pytest.mark.usefixtures('betamax_session')
class TestMyHttpClient:

def test_get(self, betamax_session):
betamax_session.get('https://httpbin.org/get')

36 Chapter 4. Contents of Betamax’s Documentation

http://pytest.org/latest/
http://pytest.org/latest/fixture.html#using-fixtures-from-classes-modules-or-projects

Betamax Documentation, Release 0.8.2

This will generate a cassette name for you, e.g., tests.test_http_integration.TestMyHttpClient.
test_get. After running this test you would have a cassette file stored in your cassette library directory named
tests.test_http_integration.TestMyHttpClient.test_get.json. To use this fixture at the mod-
ule level, you need only do

tests/test_http_integration.py
import pytest

pytest.mark.usefixtures('betamax_session')

class TestMyHttpClient:
def test_get(self, betamax_session):

betamax_session.get('https://httpbin.org/get')

class TestMyOtherHttpClient:
def test_post(self, betamax_session):

betamax_session.post('https://httpbin.org/post')

If you need to customize the recorder object, however, you can instead use the betamax_recorder fixture:

tests/test_http_integration.py
import pytest

pytest.mark.usefixtures('betamax_recorder')

class TestMyHttpClient:
def test_post(self, betamax_recorder):

betamax_recorder.current_cassette.match_options.add('json-body')
session = betamax_recorder.session

session.post('https://httpbin.org/post', json={'foo': 'bar'})

4.7.2 Unittest Integration

New in version 0.5.0.

When writing tests with unittest, a common pattern is to either import unittest.TestCase or subclass that and
use that subclass in your tests. When integrating Betamax with your unittest testsuite, you should do the following:

from betamax.fixtures import unittest

class IntegrationTestCase(unittest.BetamaxTestCase):
Add the rest of the helper methods you want for your
integration tests

class SpecificTestCase(IntegrationTestCase):
def test_something(self):

Test something

The unittest integration provides the following attributes on the test case instance:

• session the instance of BetamaxTestCase.SESSION_CLASS created for that test.

• recorder the instance of betamax.Betamax created.

4.7. Integrating Betamax with Test Frameworks 37

https://docs.python.org/3.6/library/unittest.html#unittest.TestCase

Betamax Documentation, Release 0.8.2

The integration also generates a cassette name from the test case class name and test method. So the cassette generated
for the above example would be named SpecificTestCase.test_something. To override that behaviour,
you need to override the generate_cassette_name() method in your subclass.

The default path to save cassette is ./vcr/cassettes. To override the path uses the follow code at the top of file.

with betamax.Betamax.configure() as config:
config.cassette_library_dir = 'your/path/here'

If you are subclassing requests.Session in your application, then it follows that you will want to use that in
your tests. To facilitate this, you can set the SESSION_CLASS attribute. To give a fuller example, let’s say you’re
changing the default cassette name and you’re providing your own session class, your code might look like:

from betamax.fixtures import unittest

from myapi import session

class IntegrationTestCase(unittest.BetamaxTestCase):
Add the rest of the helper methods you want for your
integration tests
SESSION_CLASS = session.MyApiSession

def generate_cassette_name(self):
classname = self.__class__.__name__
method = self._testMethodName
return 'integration_{0}_{1}'.format(classname, method)

4.8 API

class betamax.Betamax(session, cassette_library_dir=None, default_cassette_options={})
This object contains the main API of the request-vcr library.

This object is entirely a context manager so all you have to do is:

s = requests.Session()
with Betamax(s) as vcr:

vcr.use_cassette('example')
r = s.get('https://httpbin.org/get')

Or more concisely, you can do:

s = requests.Session()
with Betamax(s).use_cassette('example') as vcr:

r = s.get('https://httpbin.org/get')

This object allows for the user to specify the cassette library directory and default cassette options.

s = requests.Session()
with Betamax(s, cassette_library_dir='tests/cassettes') as vcr:

vcr.use_cassette('example')
r = s.get('https://httpbin.org/get')

with Betamax(s, default_cassette_options={
're_record_interval': 1000
}) as vcr:

(continues on next page)

38 Chapter 4. Contents of Betamax’s Documentation

https://docs.python-requests.org/en/latest/api/#requests.Session

Betamax Documentation, Release 0.8.2

(continued from previous page)

vcr.use_cassette('example')
r = s.get('https://httpbin.org/get')

betamax_adapter = None
Create a new adapter to replace the existing ones

static configure()
Help to configure the library as a whole.

with Betamax.configure() as config:
config.cassette_library_dir = 'tests/cassettes/'
config.default_cassette_options['match_options'] = [

'method', 'uri', 'headers'
]

current_cassette
Return the cassette that is currently in use.

Returns Cassette

http_adapters = None
Store the session’s original adapters.

static register_request_matcher(matcher_class)
Register a new request matcher.

Parameters matcher_class – (required), this must sub-class BaseMatcher

static register_serializer(serializer_class)
Register a new serializer.

Parameters matcher_class – (required), this must sub-class BaseSerializer

session = None
Store the requests.Session object being wrapped.

start()
Start recording or replaying interactions.

stop()
Stop recording or replaying interactions.

use_cassette(cassette_name, **kwargs)
Tell Betamax which cassette you wish to use for the context.

Parameters

• cassette_name (str) – relative name, without the serialization format, of the cassette
you wish Betamax would use

• serialize_with (str) – the format you want Betamax to serialize the cassette with

• serialize (str) – DEPRECATED the format you want Betamax to serialize the re-
quest and response data to and from

betamax.decorator.use_cassette(cassette_name, cassette_library_dir=None, de-
fault_cassette_options={}, **use_cassette_kwargs)

Provide a Betamax-wrapped Session for convenience.

New in version 0.5.0.

This decorator can be used to get a plain Session that has been wrapped in Betamax. For example,

4.8. API 39

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str

Betamax Documentation, Release 0.8.2

from betamax.decorator import use_cassette

@use_cassette('example-decorator', cassette_library_dir='.')
def test_get(session):

do things with session

Parameters

• cassette_name (str) – Name of the cassette file in which interactions will be stored.

• cassette_library_dir (str) – Directory in which cassette files will be stored.

• default_cassette_options (dict) – Dictionary of default cassette options to set
for the cassette used when recording these interactions.

• **use_cassette_kwargs – Keyword arguments passed to use_cassette()

class betamax.configure.Configuration
This object acts as a proxy to configure different parts of Betamax.

You should only ever encounter this object when configuring the library as a whole. For example:

with Betamax.configure() as config:
config.cassette_library_dir = 'tests/cassettes/'
config.default_cassette_options['record_mode'] = 'once'
config.default_cassette_options['match_requests_on'] = ['uri']
config.define_cassette_placeholder('<URI>', 'http://httpbin.org')
config.preserve_exact_body_bytes = True

after_start(callback=None)
Register a function to call after Betamax is started.

Example usage:

def on_betamax_start(cassette):
if cassette.is_recording():

print("Setting up authentication...")

with Betamax.configure() as config:
config.cassette_load(callback=on_cassette_load)

Parameters callback (callable) – The function which accepts a cassette and might mu-
tate it before returning.

before_playback(tag=None, callback=None)
Register a function to call before playing back an interaction.

Example usage:

def before_playback(interaction, cassette):
pass

with Betamax.configure() as config:
config.before_playback(callback=before_playback)

Parameters

40 Chapter 4. Contents of Betamax’s Documentation

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict

Betamax Documentation, Release 0.8.2

• tag (str) – Limits the interactions passed to the function based on the interaction’s tag
(currently unsupported).

• callback (callable) – The function which either accepts just an interaction or an
interaction and a cassette and mutates the interaction before returning.

before_record(tag=None, callback=None)
Register a function to call before recording an interaction.

Example usage:

def before_record(interaction, cassette):
pass

with Betamax.configure() as config:
config.before_record(callback=before_record)

Parameters

• tag (str) – Limits the interactions passed to the function based on the interaction’s tag
(currently unsupported).

• callback (callable) – The function which either accepts just an interaction or an
interaction and a cassette and mutates the interaction before returning.

before_stop(callback=None)
Register a function to call before Betamax stops.

Example usage:

def on_betamax_stop(cassette):
if not cassette.is_recording():

print("Playback completed.")

with Betamax.configure() as config:
config.cassette_eject(callback=on_betamax_stop)

Parameters callback (callable) – The function which accepts a cassette and might mu-
tate it before returning.

cassette_library_dir
Retrieve and set the directory to store the cassettes in.

default_cassette_options
Retrieve and set the default cassette options.

The options include:

• match_requests_on

• placeholders

• re_record_interval

• record_mode

• preserve_exact_body_bytes

Other options will be ignored.

4.8. API 41

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str

Betamax Documentation, Release 0.8.2

define_cassette_placeholder(placeholder, replace)
Define a placeholder value for some text.

This also will replace the placeholder text with the text you wish it to use when replaying interactions from
cassettes.

Parameters

• placeholder (str) – (required), text to be used as a placeholder

• replace (str) – (required), text to be replaced or replacing the placeholder

A set of fixtures to integrate Betamax with py.test.

betamax.fixtures.pytest.betamax_session(betamax_recorder)
Generate a session that has Betamax already installed.

See betamax_recorder fixture.

Parameters betamax_recorder – A recorder fixture with a configured request session.

Returns An instantiated requests Session wrapped by Betamax.

Minimal unittest.TestCase subclass adding Betamax integration.

class betamax.fixtures.unittest.BetamaxTestCase(methodName=’runTest’)
Betamax integration for unittest.

New in version 0.5.0.

CASSETTE_LIBRARY_DIR = None
Custom path to save cassette.

SESSION_CLASS
alias of requests.sessions.Session

generate_cassette_name()
Generates a cassette name for the current test.

The default format is “%(classname)s.%(testMethodName)s”

To change the default cassette format, override this method in a subclass.

Returns Cassette name for the current test.

Return type str

setUp()
Betamax-ified setUp fixture.

This will call the superclass’ setUp method first and then it will create a new requests.Session and
wrap that in a Betamax object to record it. At the end of setUp, it will start recording.

tearDown()
Betamax-ified tearDown fixture.

This will call the superclass’ tearDown method first and then it will stop recording interactions.

When using Betamax with unittest, you can use the traditional style of Betamax covered in the documentation thor-
oughly, or you can use your fixture methods, unittest.TestCase.setUp() and unittest.TestCase.
tearDown() to wrap entire tests in Betamax.

Here’s how you might use it:

42 Chapter 4. Contents of Betamax’s Documentation

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/unittest.html#unittest.TestCase
https://docs.python-requests.org/en/latest/api/#requests.Session
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python-requests.org/en/latest/api/#requests.Session
https://docs.python.org/3.6/library/unittest.html#unittest.TestCase.setUp
https://docs.python.org/3.6/library/unittest.html#unittest.TestCase.tearDown
https://docs.python.org/3.6/library/unittest.html#unittest.TestCase.tearDown

Betamax Documentation, Release 0.8.2

from betamax.fixtures import unittest

from myapi import SessionManager

class TestMyApi(unittest.BetamaxTestCase):
def setUp(self):

Call BetamaxTestCase's setUp first to get a session
super(TestMyApi, self).setUp()

self.manager = SessionManager(self.session)

def test_all_users(self):
"""Retrieve all users from the API."""
for user in self.manager:

Make assertions or something

Alternatively, if you are subclassing a requests.Session to provide extra functionality, you can do something
like this:

from betamax.fixtures import unittest

from myapi import Session, SessionManager

class TestMyApi(unittest.BetamaxTestCase):
SESSION_CLASS = Session

See above ...

4.8.1 Examples

Basic Usage

Let example.json be a file in a directory called cassettes with the content:

{
"http_interactions": [
{

"request": {
"body": {
"string": "",
"encoding": "utf-8"

},
"headers": {
"User-Agent": ["python-requests/v1.2.3"]

},
"method": "GET",
"uri": "https://httpbin.org/get"

},
"response": {

"body": {
"string": "example body",
"encoding": "utf-8"

},

(continues on next page)

4.8. API 43

https://docs.python-requests.org/en/latest/api/#requests.Session

Betamax Documentation, Release 0.8.2

(continued from previous page)

"headers": {},
"status": {
"code": 200,
"message": "OK"

},
"url": "https://httpbin.org/get"

}
}

],
"recorded_with": "betamax"

}

The following snippet will not raise any exceptions

from betamax import Betamax
from requests import Session

s = Session()

with Betamax(s, cassette_library_dir='cassettes') as betamax:
betamax.use_cassette('example', record='none')
r = s.get("https://httpbin.org/get")

On the other hand, this will raise an exception:

from betamax import Betamax
from requests import Session

s = Session()

with Betamax(s, cassette_library_dir='cassettes') as betamax:
betamax.use_cassette('example', record='none')
r = s.post("https://httpbin.org/post",

data={"key": "value"})

Finally, we can also use a decorator in order to simplify things:

import unittest

from betamax.decorator import use_cassette

class TestExample(unittest.TestCase):
@use_cassette('example', cassette_library_dir='cassettes')
def test_example(self, session):

session.get('https://httpbin.org/get')

Or if you're using something like py.test
@use_cassette('example', cassette_library_dir='cassettes')
def test_example_pytest(session):

session.get('https://httpbin.org/get')

44 Chapter 4. Contents of Betamax’s Documentation

Betamax Documentation, Release 0.8.2

4.8.2 Opinions at Work

If you use requests’s default Accept-Encoding header, servers that support gzip content encoding will return
responses that Betamax cannot serialize in a human-readable format. In this event, the cassette will look like this:

{
"http_interactions": [
{

"request": {
"body": {
"base64_string": "",
"encoding": "utf-8"

},
"headers": {
"User-Agent": ["python-requests/v1.2.3"]

},
"method": "GET",
"uri": "https://httpbin.org/get"

},
"response": {

"body": {
"base64_string": "Zm9vIGJhcgo=",
"encoding": "utf-8"

},
"headers": {
"Content-Encoding": ["gzip"]

},
"status": {
"code": 200,
"message": "OK"

},
"url": "https://httpbin.org/get"

}
}

],
"recorded_with": "betamax"

}

4.8.3 Forcing bytes to be preserved

You may want to force betamax to preserve the exact bytes in the body of a response (or request) instead of relying on
the opinions held by the library. In this case you have two ways of telling betamax to do this.

The first, is on a per-cassette basis, like so:

from betamax import Betamax
import requests

session = Session()

with Betamax.configure() as config:
c.cassette_library_dir = '.'

with Betamax(session).use_cassette('some_cassette',
preserve_exact_body_bytes=True):

r = session.get('http://example.com')

4.8. API 45

Betamax Documentation, Release 0.8.2

On the other hand, you may want to preserve exact body bytes for all cassettes. In this case, you can do:

from betamax import Betamax
import requests

session = Session()

with Betamax.configure() as config:
c.cassette_library_dir = '.'
c.preserve_exact_body_bytes = True

with Betamax(session).use_cassette('some_cassette'):
r = session.get('http://example.com')

4.9 What is a cassette?

A cassette is a set of recorded interactions serialized to a specific format. Currently the only supported format is JSON.
A cassette has a list (or array) of interactions and information about the library that recorded it. This means that the
cassette’s structure (using JSON) is

{
"http_interactions": [
// ...

],
"recorded_with": "betamax"

}

Each interaction is the object representing the request and response as well as the date it was recorded. The structure
of an interaction is

{
"request": {
// ...

},
"response": {
// ...

},
"recorded_at": "2013-09-28T01:25:38"

}

Each request has the body, method, uri, and an object representing the headers. A serialized request looks like:

{
"body": {
"string": "...",
"encoding": "utf-8"

},
"method": "GET",
"uri": "http://example.com",
"headers": {
// ...

}
}

46 Chapter 4. Contents of Betamax’s Documentation

http://json.org

Betamax Documentation, Release 0.8.2

A serialized response has the status_code, url, and objects representing the headers and the body. A serialized response
looks like:

{
"body": {
"encoding": "utf-8",
"string": "..."

},
"url": "http://example.com",
"status": {
"code": 200,
"message": "OK"

},
"headers": {
// ...

}
}

If you put everything together, you get:

{
"http_interactions": [
{

"request": {
{
"body": {

"string": "...",
"encoding": "utf-8"

},
"method": "GET",
"uri": "http://example.com",
"headers": {

// ...
}

}
},
"response": {

{
"body": {

"encoding": "utf-8",
"string": "..."

},
"url": "http://example.com",
"status": {

"code": 200,
"message": "OK"

},
"headers": {

// ...
}

}
},
"recorded_at": "2013-09-28T01:25:38"

}
],
"recorded_with": "betamax"

}

If you were to pretty-print a cassette, this is vaguely what you would see. Keep in mind that since Python does not

4.9. What is a cassette? 47

Betamax Documentation, Release 0.8.2

keep dictionaries ordered, the items may not be in the same order as this example.

Note: Pro-tip You can pretty print a cassette like so: python -m json.tool cassette.json.

4.10 What is a cassette library?

When configuring Betamax, you can choose your own cassette library directory. This is the directory available from
the current directory in which you want to store your cassettes.

For example, let’s say that you set your cassette library to be tests/cassettes/. In that case, when you record a
cassette, it will be saved there. To continue the example, let’s say you use the following code:

from requests import Session
from betamax import Betamax

s = Session()
with Betamax(s, cassette_library_dir='tests/cassettes').use_cassette('example'):

r = s.get('https://httpbin.org/get')

You would then have the following directory structure:

.
`-- tests

`-- cassettes
`-- example.json

4.11 Implementation Details

Everything here is an implementation detail and subject to volatile change. I would not rely on anything here for any
mission critical code.

4.11.1 Gzip Content-Encoding

By default, requests sets an Accept-Encoding header value that includes gzip (specifically, unless overridden,
requests always sends Accept-Encoding: gzip, deflate, compress). When a server supports this and
responds with a response that has the Content-Encoding header set to gzip, urllib3 automatically decom-
presses the body for requests. This can only be prevented in the case where the stream parameter is set to True.
Since Betamax refuses to alter the headers on the response object in any way, we force stream to be True so we
can capture the compressed data before it is decompressed. We then properly repopulate the response object so you
perceive no difference in the interaction.

To preserve the response exactly as is, we then must base64 encode the body of the response before saving it to the
file object. In other words, whenever a server responds with a compressed body, you will not have a human readable
response body. There is, at the present moment, no way to configure this so that this does not happen and because of
the way that Betamax works, you can not remove the Content-Encoding header to prevent this from happening.

48 Chapter 4. Contents of Betamax’s Documentation

Betamax Documentation, Release 0.8.2

4.11.2 Class Details

class betamax.cassette.Cassette(cassette_name, serialization_format, **kwargs)

cassette_name = None
Short name of the cassette

earliest_recorded_date
The earliest date of all of the interactions this cassette.

find_match(request)
Find a matching interaction based on the matchers and request.

This uses all of the matchers selected via configuration or use_cassette and passes in the request
currently in progress.

Parameters request – requests.PreparedRequest

Returns Interaction

is_empty()
Determine if the cassette was empty when loaded.

is_recording()
Return whether the cassette is recording.

class betamax.cassette.Interaction(interaction, response=None)
The Interaction object represents the entirety of a single interaction.

The interaction includes the date it was recorded, its JSON representation, and the requests.Response
object complete with its request attribute.

This object also handles the filtering of sensitive data.

No methods or attributes on this object are considered public or part of the public API. As such they are entirely
considered implementation details and subject to change. Using or relying on them is not wise or advised.

as_response()
Return the Interaction as a Response object.

deserialize()
Turn a serialized interaction into a Response.

ignore()
Ignore this interaction.

This is only to be used from a before_record or a before_playback callback.

match(matchers)
Return whether this interaction is a match.

replace(text_to_replace, placeholder)
Replace sensitive data in this interaction.

replace_all(replacements, serializing)
Easy way to accept all placeholders registered.

4.12 Matchers

You can specify how you would like Betamax to match requests you are making with the recorded requests. You have
the following options for default (built-in) matchers:

4.12. Matchers 49

Betamax Documentation, Release 0.8.2

Matcher Behaviour
body This matches by checking the equality of the request bodies.
headers This matches by checking the equality of all of the request headers
host This matches based on the host of the URI
method This matches based on the method, e.g., GET, POST, etc.
path This matches on the path of the URI
query This matches on the query part of the URI
uri This matches on the entirety of the URI

4.12.1 Default Matchers

By default, Betamax matches on uri and method.

4.12.2 Specifying Matchers

You can specify the matchers to be used in the entire library by configuring Betamax like so:

import betamax

with betamax.Betamax.configure() as config:
config.default_cassette_options['match_requests_on'].extend([

'headers', 'body'
])

Instead of configuring global state, though, you can set it per cassette. For example:

import betamax
import requests

session = requests.Session()
recorder = betamax.Betamax(session)
match_on = ['uri', 'method', 'headers', 'body']
with recorder.use_cassette('example', match_requests_on=match_on):

...

4.12.3 Making Your Own Matcher

So long as you are matching requests, you can define your own way of matching. Each request matcher has to inherit
from betamax.BaseMatcher and implement match.

class betamax.BaseMatcher
Base class that ensures sub-classes that implement custom matchers can be registered and have the only method
that is required.

Usage:

from betamax import Betamax, BaseMatcher

class MyMatcher(BaseMatcher):
name = 'my'

(continues on next page)

50 Chapter 4. Contents of Betamax’s Documentation

Betamax Documentation, Release 0.8.2

(continued from previous page)

def match(self, request, recorded_request):
My fancy matching algorithm

Betamax.register_request_matcher(MyMatcher)

The last line is absolutely necessary.

The match method will be given a requests.PreparedRequest object and a dictionary. The dictionary always has
the following keys:

• url

• method

• body

• headers

match(request, recorded_request)
A method that must be implemented by the user.

Parameters

• request (PreparedRequest) – A requests PreparedRequest object

• recorded_request (dict) – A dictionary containing the serialized request in the
cassette

Returns bool True if they match else False

on_init()
Method to implement if you wish something to happen in __init__.

The return value is not checked and this is called at the end of __init__. It is meant to provide the
matcher author a way to perform things during initialization of the instance that would otherwise require
them to override BaseMatcher.__init__.

Some examples of matchers are in the source reproduced here:

-*- coding: utf-8 -*-
from .base import BaseMatcher

class HeadersMatcher(BaseMatcher):
Matches based on the headers of the request
name = 'headers'

def match(self, request, recorded_request):
return dict(request.headers) == self.flatten_headers(recorded_request)

def flatten_headers(self, request):
from betamax.util import from_list
headers = request['headers'].items()
return dict((k, from_list(v)) for (k, v) in headers)

-*- coding: utf-8 -*-
from .base import BaseMatcher
from requests.compat import urlparse

(continues on next page)

4.12. Matchers 51

https://docs.python.org/3.6/library/stdtypes.html#dict

Betamax Documentation, Release 0.8.2

(continued from previous page)

class HostMatcher(BaseMatcher):
Matches based on the host of the request
name = 'host'

def match(self, request, recorded_request):
request_host = urlparse(request.url).netloc
recorded_host = urlparse(recorded_request['uri']).netloc
return request_host == recorded_host

-*- coding: utf-8 -*-
from .base import BaseMatcher

class MethodMatcher(BaseMatcher):
Matches based on the method of the request
name = 'method'

def match(self, request, recorded_request):
return request.method == recorded_request['method']

-*- coding: utf-8 -*-
from .base import BaseMatcher
from requests.compat import urlparse

class PathMatcher(BaseMatcher):
Matches based on the path of the request
name = 'path'

def match(self, request, recorded_request):
request_path = urlparse(request.url).path
recorded_path = urlparse(recorded_request['uri']).path
return request_path == recorded_path

-*- coding: utf-8 -*-
from .base import BaseMatcher
from requests.compat import urlparse

class PathMatcher(BaseMatcher):
Matches based on the path of the request
name = 'path'

def match(self, request, recorded_request):
request_path = urlparse(request.url).path
recorded_path = urlparse(recorded_request['uri']).path
return request_path == recorded_path

-*- coding: utf-8 -*-
from .base import BaseMatcher
from .query import QueryMatcher
from requests.compat import urlparse

class URIMatcher(BaseMatcher):
(continues on next page)

52 Chapter 4. Contents of Betamax’s Documentation

Betamax Documentation, Release 0.8.2

(continued from previous page)

Matches based on the uri of the request
name = 'uri'

def on_init(self):
Get something we can use to match query strings with
self.query_matcher = QueryMatcher().match

def match(self, request, recorded_request):
queries_match = self.query_matcher(request, recorded_request)
request_url, recorded_url = request.url, recorded_request['uri']
return self.all_equal(request_url, recorded_url) and queries_match

def parse(self, uri):
parsed = urlparse(uri)
return {

'scheme': parsed.scheme,
'netloc': parsed.netloc,
'path': parsed.path,
'fragment': parsed.fragment
}

def all_equal(self, new_uri, recorded_uri):
new_parsed = self.parse(new_uri)
recorded_parsed = self.parse(recorded_uri)
return (new_parsed == recorded_parsed)

When you have finished writing your own matcher, you can instruct betamax to use it like so:

import betamax

class MyMatcher(betamax.BaseMatcher):
name = 'my'

def match(self, request, recorded_request):
return True

betamax.Betamax.register_request_matcher(MyMatcher)

To use it, you simply use the name you set like you use the name of the default matchers, e.g.:

with Betamax(s).use_cassette('example', match_requests_on=['uri', 'my']):
...

on_init

As you can see in the code for URIMatcher, we use on_init to initialize an attribute on the URIMatcher
instance. This method serves to provide the matcher author with a different way of initializing the object outside of
the match method. This also means that the author does not have to override the base class’ __init__ method.

4.13 Serializers

You can tell Betamax how you would like it to serialize the cassettes when saving them to a file. By default Betamax
will serialize your cassettes to JSON. The only default serializer is the JSON serializer, but writing your own is very

4.13. Serializers 53

Betamax Documentation, Release 0.8.2

easy.

4.13.1 Creating Your Own Serializer

Betamax handles the structuring of the cassette and writing to a file, your serializer simply takes a dictionary and
returns a string.

Every Serializer has to inherit from betamax.BaseSerializer and implement three methods:

• betamax.BaseSerializer.generate_cassette_name which is a static method. This will take the
directory the user (you) wants to store the cassettes in and the name of the cassette and generate the file name.

• betamax.BaseSerializer.serialize() is a method that takes the dictionary and returns the dictio-
nary serialized as a string

• betamax.BaseSerializer.deserialize() is a method that takes a string and returns the data serial-
ized in it as a dictionary.

New in version 0.9.0: Allow Serializers to indicate their format is a binary format via stored_as_binary.

Additionally, if your Serializer is utilizing a binary format, you will want to set the stored_as_binary attribute
to True on your class.

class betamax.BaseSerializer
Base Serializer class that provides an interface for other serializers.

Usage:

from betamax import Betamax, BaseSerializer

class MySerializer(BaseSerializer):
name = 'my'

@staticmethod
def generate_cassette_name(cassette_library_dir, cassette_name):

Generate a string that will give the relative path of a
cassette

def serialize(self, cassette_data):
Take a dictionary and convert it to whatever

def deserialize(self, cassette_data):
Uses a cassette file to return a dictionary with the
cassette information

Betamax.register_serializer(MySerializer)

The last line is absolutely necessary.

deserialize(cassette_data)
A method that must be implemented by the Serializer author.

The return value is extremely important. If it is not empty, the dictionary returned must have the following
structure:

{
'http_interactions': [{

Interaction
},

(continues on next page)

54 Chapter 4. Contents of Betamax’s Documentation

Betamax Documentation, Release 0.8.2

(continued from previous page)

{
Interaction

}],
'recorded_with': 'name of recorder'

}

Params str cassette_data The data serialized as a string which needs to be deserialized.

Returns dictionary

on_init()
Method to implement if you wish something to happen in __init__.

The return value is not checked and this is called at the end of __init__. It is meant to provide the
matcher author a way to perform things during initialization of the instance that would otherwise require
them to override BaseSerializer.__init__.

serialize(cassette_data)
A method that must be implemented by the Serializer author.

Parameters cassette_data (dict) – A dictionary with two keys:
http_interactions, recorded_with.

Returns Serialized data as a string.

Here’s the default (JSON) serializer as an example:

from .base import BaseSerializer

import json
import os

class JSONSerializer(BaseSerializer):
Serializes and deserializes a cassette to JSON
name = 'json'
stored_as_binary = False

@staticmethod
def generate_cassette_name(cassette_library_dir, cassette_name):

return os.path.join(cassette_library_dir,
'{0}.{1}'.format(cassette_name, 'json'))

def serialize(self, cassette_data):
return json.dumps(cassette_data)

def deserialize(self, cassette_data):
try:

deserialized_data = json.loads(cassette_data)
except ValueError:

deserialized_data = {}

return deserialized_data

This is incredibly simple. We take advantage of the os.path to properly join the directory name and the file name.
Betamax uses this method to find an existing cassette or create a new one.

4.13. Serializers 55

https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/os.path.html#module-os.path

Betamax Documentation, Release 0.8.2

Next we have the betamax.serializers.JSONSerializer.serialize() which takes the cassette dic-
tionary and turns it into a string for us. Here we are just leveraging the json module and its ability to dump any valid
dictionary to a string.

Finally, there is the betamax.serializers.JSONSerializer.deserialize() method which takes a
string and turns it into the dictionary that betamax needs to function.

4.14 Indices and tables

• genindex

• modindex

• search

56 Chapter 4. Contents of Betamax’s Documentation

https://docs.python.org/3.6/library/json.html#module-json

Python Module Index

b
betamax, 38
betamax.fixtures.pytest, 42
betamax.fixtures.unittest, 42

57

Betamax Documentation, Release 0.8.2

58 Python Module Index

Index

A
after_start() (betamax.configure.Configuration

method), 40
as_response() (betamax.cassette.Interaction

method), 49

B
BaseMatcher (class in betamax), 50
BaseSerializer (class in betamax), 54
before_playback() (beta-

max.configure.Configuration method), 40
before_record() (betamax.configure.Configuration

method), 41
before_stop() (betamax.configure.Configuration

method), 41
Betamax (class in betamax), 38
betamax (module), 38
betamax.fixtures.pytest (module), 42
betamax.fixtures.unittest (module), 42
betamax_adapter (betamax.Betamax attribute), 39
betamax_session() (in module beta-

max.fixtures.pytest), 42
BetamaxTestCase (class in beta-

max.fixtures.unittest), 42

C
Cassette (class in betamax.cassette), 49
cassette_library_dir (beta-

max.configure.Configuration attribute), 41
CASSETTE_LIBRARY_DIR (beta-

max.fixtures.unittest.BetamaxTestCase at-
tribute), 42

cassette_name (betamax.cassette.Cassette attribute),
49

Configuration (class in betamax.configure), 40
configure() (betamax.Betamax static method), 39
current_cassette (betamax.Betamax attribute), 39

D
default_cassette_options (beta-

max.configure.Configuration attribute), 41
define_cassette_placeholder() (beta-

max.configure.Configuration method), 41
deserialize() (betamax.BaseSerializer method), 54
deserialize() (betamax.cassette.Interaction

method), 49

E
earliest_recorded_date (beta-

max.cassette.Cassette attribute), 49

F
find_match() (betamax.cassette.Cassette method),

49

G
generate_cassette_name() (beta-

max.fixtures.unittest.BetamaxTestCase
method), 42

H
http_adapters (betamax.Betamax attribute), 39

I
ignore() (betamax.cassette.Interaction method), 49
Interaction (class in betamax.cassette), 49
is_empty() (betamax.cassette.Cassette method), 49
is_recording() (betamax.cassette.Cassette

method), 49

M
match() (betamax.BaseMatcher method), 51
match() (betamax.cassette.Interaction method), 49

O
on_init() (betamax.BaseMatcher method), 51
on_init() (betamax.BaseSerializer method), 55

59

Betamax Documentation, Release 0.8.2

R
register_request_matcher() (beta-

max.Betamax static method), 39
register_serializer() (betamax.Betamax static

method), 39
replace() (betamax.cassette.Interaction method), 49
replace_all() (betamax.cassette.Interaction

method), 49

S
serialize() (betamax.BaseSerializer method), 55
session (betamax.Betamax attribute), 39
SESSION_CLASS (beta-

max.fixtures.unittest.BetamaxTestCase at-
tribute), 42

setUp() (betamax.fixtures.unittest.BetamaxTestCase
method), 42

start() (betamax.Betamax method), 39
stop() (betamax.Betamax method), 39

T
tearDown() (betamax.fixtures.unittest.BetamaxTestCase

method), 42

U
use_cassette() (betamax.Betamax method), 39
use_cassette() (in module betamax.decorator), 39

60 Index

	Example Use
	What does it even do?
	VCR Cassette Compatibility
	Contents of Betamax’s Documentation
	Getting Started
	Installation
	Configuration
	Recording Your First Cassette
	Recording More Complex Cassettes

	Long Term Usage Patterns
	Adding New Requests to a Cassette
	Known Issues

	Configuring Betamax
	Global Configuration
	Per-Use Configuration
	Mixing and Matching

	Record Modes
	All
	New Episodes
	None
	Once

	Third-Party Packages
	Request Matchers
	Cassette Serializers

	Usage Patterns
	Configuring Betamax in py.test’s conftest.py
	Using Human Readable JSON Cassettes

	Integrating Betamax with Test Frameworks
	PyTest Integration
	Unittest Integration

	API
	Examples
	Opinions at Work
	Forcing bytes to be preserved

	What is a cassette?
	What is a cassette library?
	Implementation Details
	Gzip Content-Encoding
	Class Details

	Matchers
	Default Matchers
	Specifying Matchers
	Making Your Own Matcher

	Serializers
	Creating Your Own Serializer

	Indices and tables

	Python Module Index
	Index

