

betamax

Betamax is a VCR [https://github.com/vcr/vcr] imitation for requests. This will make mocking out requests
much easier. It is tested on Travis CI [https://travis-ci.org/sigmavirus24/betamax].

Put in a more humorous way: “Betamax records your HTTP interactions so the NSA
does not have to.”

Example Use

from betamax import Betamax
from requests import Session
from unittest import TestCase

with Betamax.configure() as config:
 config.cassette_library_dir = 'tests/fixtures/cassettes'

class TestGitHubAPI(TestCase):
 def setUp(self):
 self.session = Session()
 self.headers.update(...)

 # Set the cassette in a line other than the context declaration
 def test_user(self):
 with Betamax(self.session) as vcr:
 vcr.use_cassette('user')
 resp = self.session.get('https://api.github.com/user',
 auth=('user', 'pass'))
 assert resp.json()['login'] is not None

 # Set the cassette in line with the context declaration
 def test_repo(self):
 with Betamax(self.session).use_cassette('repo'):
 resp = self.session.get(
 'https://api.github.com/repos/sigmavirus24/github3.py'
)
 assert resp.json()['owner'] != {}

What does it even do?

If you are unfamiliar with VCR [https://github.com/vcr/vcr], you might need a better explanation of what
Betamax does.

Betamax intercepts every request you make and attempts to find a matching
request that has already been intercepted and recorded. Two things can then
happen:

	If there is a matching request, it will return the response that is
associated with it.

	If there is not a matching request and it is allowed to record new
responses, it will make the request, record the response and return the
response.

Recorded requests and corresponding responses - also known as interactions -
are stored in files called cassettes. (An example cassette can be seen in
the examples section of the documentation [http://betamax.readthedocs.org/en/latest/api.html#examples].) The directory you store your
cassettes in is called your library, or your cassette library [http://betamax.readthedocs.org/en/latest/cassettes.html].

VCR Cassette Compatibility

Betamax can use any VCR-recorded cassette as of this point in time. The only
caveat is that python-requests returns a URL on each response. VCR does not
store that in a cassette now but we will. Any VCR-recorded cassette used to
playback a response will unfortunately not have a URL attribute on responses
that are returned. This is a minor annoyance but not something that can be
fixed.

Contents of Betamax’s Documentation

Narrative Documentation

	Getting Started
	Installation

	Configuration

	Recording Your First Cassette

	Recording More Complex Cassettes

	Long Term Usage Patterns
	Adding New Requests to a Cassette
	Option 1: Re-recording the Cassette

	Option 2: Changing the Record Mode

	Known Issues
	Tests Periodically Slow Down

	Configuring Betamax
	Global Configuration
	Setting the Directory in which Betamax Should Store Cassette Files

	Setting Default Cassette Options

	Filtering Sensitive Data

	Setting default serializer

	Per-Use Configuration
	Setting the Directory in which Betamax Should Store Cassette Files

	Setting Default Cassette Options

	Filtering Sensitive Data

	Mixing and Matching

	Record Modes
	All

	New Episodes

	None

	Once

	Third-Party Packages
	Request Matchers

	Cassette Serializers

	Usage Patterns
	Configuring Betamax in py.test’s conftest.py
	An Example from github3.py

	Using Human Readable JSON Cassettes
	Updating Existing Betamax Cassettes to be Human Readable

	Integrating Betamax with Test Frameworks
	PyTest Integration

	Unittest Integration

API Documentation

	API
	Examples

	Opinions at Work

	Forcing bytes to be preserved

	What is a cassette?

	What is a cassette library?

	Implementation Details
	Gzip Content-Encoding

	Class Details

	Matchers
	Default Matchers

	Specifying Matchers

	Making Your Own Matcher

	Serializers
	Creating Your Own Serializer

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

The first step is to make sure Betamax is right for you. Let’s start by
answering the following questions

	Are you using Requests [http://docs.python-requests.org/]?

If you’re not using Requests, Betamax is not for you. You should checkout
VCRpy [https://github.com/kevin1024/vcrpy].

	Are you using Sessions or are you using the functional API (e.g.,
requests.get)?

If you’re using the functional API, and aren’t willing to use Sessions,
Betamax is not yet for you.

So if you’re using Requests and you’re using Sessions, you’re in the right
place.

Betamax officially supports py.test [http://pytest.org/] and unittest [https://docs.python.org/3/library/unittest.html] but it should integrate
well with nose as well.

Installation

$ pip install betamax

Configuration

When starting with Betamax, you need to tell it where to store the cassettes
that it creates. There’s two ways to do this:

	If you’re using Betamax or
use_cassette you can pass the
cassette_library_dir option. For example,

import betamax
import requests

session = requests.Session()
recorder = betamax.Betamax(session, cassette_library_dir='cassettes')
with recorder.use_cassette('introduction'):
 # ...

	You can do it once, globally, for your test suite.

import betamax

with betamax.Betamax.configure() as config:
 config.cassette_library_dir = 'cassettes'

Note

If you don’t set a cassette directory, Betamax won’t save cassettes to
disk

There are other configuration options that can be provided, but this is the
only one that is required.

Recording Your First Cassette

Let’s make a file named our_first_recorded_session.py. Let’s add the
following to our file:

import betamax
import requests

CASSETTE_LIBRARY_DIR = 'examples/cassettes/'

def main():
 session = requests.Session()
 recorder = betamax.Betamax(
 session, cassette_library_dir=CASSETTE_LIBRARY_DIR
)

 with recorder.use_cassette('our-first-recorded-session'):
 session.get('https://httpbin.org/get')

if __name__ == '__main__':
 main()

If we then run our script, we’ll see that a new file is created in our
specified cassette directory. It should look something like:

{"http_interactions": [{"request": {"body": {"string": "", "encoding": "utf-8"}, "headers": {"Connection": ["keep-alive"], "Accept-Encoding": ["gzip, deflate"], "Accept": ["*/*"], "User-Agent": ["python-requests/2.7.0 CPython/2.7.9 Darwin/14.1.0"]}, "method": "GET", "uri": "https://httpbin.org/get"}, "response": {"body": {"string": "{\n \"args\": {}, \n \"headers\": {\n \"Accept\": \"*/*\", \n \"Accept-Encoding\": \"gzip, deflate\", \n \"Host\": \"httpbin.org\", \n \"User-Agent\": \"python-requests/2.7.0 CPython/2.7.9 Darwin/14.1.0\"\n }, \n \"origin\": \"127.0.0.1\", \n \"url\": \"https://httpbin.org/get\"\n}\n", "encoding": null}, "headers": {"content-length": ["265"], "server": ["nginx"], "connection": ["keep-alive"], "access-control-allow-credentials": ["true"], "date": ["Fri, 19 Jun 2015 04:10:33 GMT"], "access-control-allow-origin": ["*"], "content-type": ["application/json"]}, "status": {"message": "OK", "code": 200}, "url": "https://httpbin.org/get"}, "recorded_at": "2015-06-19T04:10:33"}], "recorded_with": "betamax/0.4.1"}

Now, each subsequent time that we run that script, we will use the recorded
interaction instead of talking to the internet over and over again.

Note

There is no need to write any other code to replay your cassettes. Each
time you run that session with the cassette in place, Betamax does all the
heavy lifting for you.

Recording More Complex Cassettes

Most times we cannot isolate our tests to a single request at a time, so we’ll
have cassettes that make multiple requests. Betamax can handle these with
ease, let’s take a look at an example.

import betamax
from betamax_serializers import pretty_json
import requests

CASSETTE_LIBRARY_DIR = 'examples/cassettes/'

def main():
 session = requests.Session()
 betamax.Betamax.register_serializer(pretty_json.PrettyJSONSerializer)
 recorder = betamax.Betamax(
 session, cassette_library_dir=CASSETTE_LIBRARY_DIR
)

 with recorder.use_cassette('more-complicated-cassettes',
 serialize_with='prettyjson'):
 session.get('https://httpbin.org/get')
 session.post('https://httpbin.org/post',
 params={'id': '20'},
 json={'some-attribute': 'some-value'})
 session.get('https://httpbin.org/get', params={'id': '20'})

if __name__ == '__main__':
 main()

Before we run this example, we have to install a new package:
betamax-serializers, e.g., pip install betamax-serializers.

If we now run our new example, we’ll see a new file appear in our
examples/cassettes/ directory named
more-complicated-cassettes.json. This cassette will be much larger as
a result of making 3 requests and receiving 3 responses. You’ll also notice
that we imported betamax_serializers.pretty_json and called
register_serializer() with
PrettyJSONSerializer. Then we added
a keyword argument to our invocation of use_cassette(),
serialize_with='prettyjson'.
PrettyJSONSerializer is a class
provided by the betamax-serializers package on PyPI that can serialize and
deserialize cassette data into JSON while allowing it to be easily human
readable and pretty. Let’s see the results:

{
 "http_interactions": [
 {
 "recorded_at": "2015-06-21T19:22:54",
 "request": {
 "body": {
 "encoding": "utf-8",
 "string": ""
 },
 "headers": {
 "Accept": [
 "*/*"
],
 "Accept-Encoding": [
 "gzip, deflate"
],
 "Connection": [
 "keep-alive"
],
 "User-Agent": [
 "python-requests/2.7.0 CPython/2.7.9 Darwin/14.1.0"
]
 },
 "method": "GET",
 "uri": "https://httpbin.org/get"
 },
 "response": {
 "body": {
 "encoding": null,
 "string": "{\n \"args\": {}, \n \"headers\": {\n \"Accept\": \"*/*\", \n \"Accept-Encoding\": \"gzip, deflate\", \n \"Host\": \"httpbin.org\", \n \"User-Agent\": \"python-requests/2.7.0 CPython/2.7.9 Darwin/14.1.0\"\n }, \n \"origin\": \"127.0.0.1\", \n \"url\": \"https://httpbin.org/get\"\n}\n"
 },
 "headers": {
 "access-control-allow-credentials": [
 "true"
],
 "access-control-allow-origin": [
 "*"
],
 "connection": [
 "keep-alive"
],
 "content-length": [
 "265"
],
 "content-type": [
 "application/json"
],
 "date": [
 "Sun, 21 Jun 2015 19:22:54 GMT"
],
 "server": [
 "nginx"
]
 },
 "status": {
 "code": 200,
 "message": "OK"
 },
 "url": "https://httpbin.org/get"
 }
 },
 {
 "recorded_at": "2015-06-21T19:22:54",
 "request": {
 "body": {
 "encoding": "utf-8",
 "string": "{\"some-attribute\": \"some-value\"}"
 },
 "headers": {
 "Accept": [
 "*/*"
],
 "Accept-Encoding": [
 "gzip, deflate"
],
 "Connection": [
 "keep-alive"
],
 "Content-Length": [
 "32"
],
 "Content-Type": [
 "application/json"
],
 "User-Agent": [
 "python-requests/2.7.0 CPython/2.7.9 Darwin/14.1.0"
]
 },
 "method": "POST",
 "uri": "https://httpbin.org/post?id=20"
 },
 "response": {
 "body": {
 "encoding": null,
 "string": "{\n \"args\": {\n \"id\": \"20\"\n }, \n \"data\": \"{\\\"some-attribute\\\": \\\"some-value\\\"}\", \n \"files\": {}, \n \"form\": {}, \n \"headers\": {\n \"Accept\": \"*/*\", \n \"Accept-Encoding\": \"gzip, deflate\", \n \"Content-Length\": \"32\", \n \"Content-Type\": \"application/json\", \n \"Host\": \"httpbin.org\", \n \"User-Agent\": \"python-requests/2.7.0 CPython/2.7.9 Darwin/14.1.0\"\n }, \n \"json\": {\n \"some-attribute\": \"some-value\"\n }, \n \"origin\": \"127.0.0.1\", \n \"url\": \"https://httpbin.org/post?id=20\"\n}\n"
 },
 "headers": {
 "access-control-allow-credentials": [
 "true"
],
 "access-control-allow-origin": [
 "*"
],
 "connection": [
 "keep-alive"
],
 "content-length": [
 "495"
],
 "content-type": [
 "application/json"
],
 "date": [
 "Sun, 21 Jun 2015 19:22:54 GMT"
],
 "server": [
 "nginx"
]
 },
 "status": {
 "code": 200,
 "message": "OK"
 },
 "url": "https://httpbin.org/post?id=20"
 }
 },
 {
 "recorded_at": "2015-06-21T19:22:54",
 "request": {
 "body": {
 "encoding": "utf-8",
 "string": ""
 },
 "headers": {
 "Accept": [
 "*/*"
],
 "Accept-Encoding": [
 "gzip, deflate"
],
 "Connection": [
 "keep-alive"
],
 "User-Agent": [
 "python-requests/2.7.0 CPython/2.7.9 Darwin/14.1.0"
]
 },
 "method": "GET",
 "uri": "https://httpbin.org/get?id=20"
 },
 "response": {
 "body": {
 "encoding": null,
 "string": "{\n \"args\": {\n \"id\": \"20\"\n }, \n \"headers\": {\n \"Accept\": \"*/*\", \n \"Accept-Encoding\": \"gzip, deflate\", \n \"Host\": \"httpbin.org\", \n \"User-Agent\": \"python-requests/2.7.0 CPython/2.7.9 Darwin/14.1.0\"\n }, \n \"origin\": \"127.0.0.1\", \n \"url\": \"https://httpbin.org/get?id=20\"\n}\n"
 },
 "headers": {
 "access-control-allow-credentials": [
 "true"
],
 "access-control-allow-origin": [
 "*"
],
 "connection": [
 "keep-alive"
],
 "content-length": [
 "289"
],
 "content-type": [
 "application/json"
],
 "date": [
 "Sun, 21 Jun 2015 19:22:54 GMT"
],
 "server": [
 "nginx"
]
 },
 "status": {
 "code": 200,
 "message": "OK"
 },
 "url": "https://httpbin.org/get?id=20"
 }
 }
],
 "recorded_with": "betamax/0.4.2"
}

This makes the cassette easy to read and helps us recognize that requests and
responses are paired together. We’ll explore cassettes more a bit later.

Long Term Usage Patterns

Now that we’ve covered the basics in Getting Started, let’s look at
some patterns and problems we might encounter when using Betamax over a period
of months instead of minutes.

Adding New Requests to a Cassette

Let’s reuse an example. Specifically let’s reuse our
examples/more_complicated_cassettes.py example.

import betamax
from betamax_serializers import pretty_json
import requests

CASSETTE_LIBRARY_DIR = 'examples/cassettes/'

def main():
 session = requests.Session()
 betamax.Betamax.register_serializer(pretty_json.PrettyJSONSerializer)
 recorder = betamax.Betamax(
 session, cassette_library_dir=CASSETTE_LIBRARY_DIR
)

 with recorder.use_cassette('more-complicated-cassettes',
 serialize_with='prettyjson'):
 session.get('https://httpbin.org/get')
 session.post('https://httpbin.org/post',
 params={'id': '20'},
 json={'some-attribute': 'some-value'})
 session.get('https://httpbin.org/get', params={'id': '20'})

if __name__ == '__main__':
 main()

Let’s add a new POST request in there:

session.post('https://httpbin.org/post',
 params={'id': '20'},
 json={'some-other-attribute': 'some-other-value'})

If we run this cassette now, we should expect to see that there was an
exception because Betamax couldn’t find a matching request for it. We expect
this because the post requests have two completely different bodies, right?
Right. The problem you’ll find is that by default Betamax only matches on
the URI and the Method. So Betamax will find a matching request/response pair
for ("POST", "https://httpbin.org/post?id=20") and reuse it. So now we
need to update how we use Betamax so it will match using the body as well:

import betamax
from betamax_serializers import pretty_json
import requests

CASSETTE_LIBRARY_DIR = 'examples/cassettes/'

def main():
 session = requests.Session()
 betamax.Betamax.register_serializer(pretty_json.PrettyJSONSerializer)
 recorder = betamax.Betamax(
 session, cassette_library_dir=CASSETTE_LIBRARY_DIR
)
 matchers = ['method', 'uri', 'body']

 with recorder.use_cassette('more-complicated-cassettes',
 serialize_with='prettyjson',
 match_requests_on=matchers):
 session.get('https://httpbin.org/get')
 session.post('https://httpbin.org/post',
 params={'id': '20'},
 json={'some-attribute': 'some-value'})
 session.get('https://httpbin.org/get', params={'id': '20'})
 session.post('https://httpbin.org/post',
 params={'id': '20'},
 json={'some-other-attribute': 'some-other-value'})

if __name__ == '__main__':
 main()

Now when we run that we should see something like this:

Traceback (most recent call last):
 File "examples/more_complicated_cassettes_2.py", line 30, in <module>
 main()
 File "examples/more_complicated_cassettes_2.py", line 26, in main
 json={'some-other-attribute': 'some-other-value'})
 File ".../lib/python2.7/site-packages/requests/sessions.py", line 508, in post
 return self.request('POST', url, data=data, json=json, **kwargs)
 File ".../lib/python2.7/site-packages/requests/sessions.py", line 465, in request
 resp = self.send(prep, **send_kwargs)
 File ".../lib/python2.7/site-packages/requests/sessions.py", line 573, in send
 r = adapter.send(request, **kwargs)
 File ".../lib/python2.7/site-packages/betamax/adapter.py", line 91, in send
 self.cassette))
betamax.exceptions.BetamaxError: A request was made that could not be handled.

A request was made to https://httpbin.org/post?id=20 that could not be found in more-complicated-cassettes.

The settings on the cassette are:

 - record_mode: once
 - match_options ['method', 'uri', 'body'].

This is what we do expect to see. So, how do we fix it?

We have a few options to fix it.

Option 1: Re-recording the Cassette

One of the easiest ways to fix this situation is to simply remove the cassette
that was recorded and run the script again. This will recreate the cassette
and subsequent runs will work just fine.

To be clear, we’re advocating for this option that the user do:

$ rm examples/cassettes/{{ cassette-name }}

This is the favorable option if you don’t foresee yourself needing to add new
interactions often.

Option 2: Changing the Record Mode

A different way would be to update the recording mode used by Betamax. We
would update the line in our file that currently reads:

with recorder.use_cassette('more-complicated-cassettes',
 serialize_with='prettyjson',
 match_requests_on=matchers):

to add one more parameter to the call to use_cassette().
We want to use the record parameter to tell Betamax to use either the
new_episodes or all modes. Which you choose depends on your use case.

new_episodes will only record new request/response interactions that
Betamax sees. all will just re-record every interaction every time. In our
example, we’ll use new_episodes so our code now looks like:

with recorder.use_cassette('more-complicated-cassettes',
 serialize_with='prettyjson',
 match_requests_on=matchers,
 record='new_episodes'):

Known Issues

Tests Periodically Slow Down

Description:

Requests checks if it should use or bypass proxies using the standard library
function proxy_bypass. This has been known to cause slow downs when using
Requests and can cause your recorded requests to slow down as well.

Betamax presently has no way to prevent this from being called as it operates
at a lower level in Requests than is necessary.

Workarounds:

	Mock gethostbyname method from socket library, to force a localhost setting,
e.g.,

import socket
socket.gethostbyname = lambda x: '127.0.0.1'

	Set trust_env to False on the session used with Betamax. This will
prevent Requests from checking for proxies and whether it needs bypass them.

Related bugs:

	https://github.com/sigmavirus24/betamax/issues/96

	https://github.com/kennethreitz/requests/issues/2988

Configuring Betamax

By now you’ve seen examples where we pass a great deal of keyword arguments to
use_cassette(). You have also seen that we used
betamax.Betamax.configure(). In this section, we’ll go into a deep
description of the different approaches and why you might pick one over the
other.

Global Configuration

Admittedly, I am not too proud of my decision to borrow this design from
VCR [https://relishapp.com/vcr/vcr], but I did and I use it and it isn’t entirely terrible. (Note: I do
hope to come up with an elegant way to redesign it for v1.0.0 but that’s a
long way off.)

The best way to configure Betamax globally is by using
betamax.Betamax.configure(). This returns a
betamax.configure.Configuration instance. This instance can be used
as a context manager in order to make the usage look more like VCR [https://relishapp.com/vcr/vcr]’s way of
configuring the library. For example, in VCR [https://relishapp.com/vcr/vcr], you might do

VCR.configure do |config|
 config.cassette_library_dir = 'examples/cassettes'
 config.default_cassette_options[:record] = :none
 # ...
end

Where as with Betamax you might do

from betamax import Betamax

with Betamax.configure() as config:
 config.cassette_library_dir = 'examples/cassettes'
 config.default_cassette_options['record_mode'] = 'none'

Alternatively, since the object returned is really just an object and does not
do anything special as a context manager, you could just as easily do

from betamax import Betamax

config = Betamax.configure()
config.cassette_library_dir = 'examples/cassettes'
config.default_cassette_options['record_mode'] = 'none'

We’ll now move on to specific use-cases when configuring Betamax. We’ll
exclude the portion of each example where we create a
Configuration instance.

Setting the Directory in which Betamax Should Store Cassette Files

Each and every time we use Betamax we need to tell it where to store (and
discover) cassette files. By default we do this by setting the
cassette_library_dir attribute on our config object, e.g.,

config.cassette_library_dir = 'tests/integration/cassettes'

Note that these paths are relative to what Python thinks is the current
working directory. Wherever you run your tests from, write the path to be
relative to that directory.

Setting Default Cassette Options

Cassettes have default options used by Betamax if none are set. For example,

	The default record mode is once.

	The default matchers used are method and uri.

	Cassettes do not preserve the exact body bytes by default.

These can all be configured as you please. For example, if you want to change
the default matchers and preserve exact body bytes, you would do

config.default_cassette_options['match_requests_on'] = [
 'method',
 'uri',
 'headers',
]
config.preserve_exact_body_bytes = True

Filtering Sensitive Data

It’s unlikely that you’ll want to record an interaction that will not require
authentication. For this we can define placeholders in our cassettes. Let’s
use a very real example.

Let’s say that you want to get your user data from GitHub using Requests. You
might have code that looks like this:

def me(username, password, session):
 r = session.get('https://api.github.com/user', auth=(username, password))
 r.raise_for_status()
 return r.json()

You would test this something like:

import os

import betamax
import requests

from my_module import me

session = requests.Session()
recorder = betamax.Betamax(session)
username = os.environ.get('USERNAME', 'testuser')
password = os.environ.get('PASSWORD', 'testpassword')

with recorder.use_cassette('test-me'):
 json = me(username, password, session)
 # assertions about the JSON returned

The problem is that now your username and password will be recorded in the
cassette which you don’t then want to push to your version control. How can we
prevent that from happening?

import base64

username = os.environ.get('USERNAME', 'testuser')
password = os.environ.get('PASSWORD', 'testpassword')
config.define_cassette_placeholder(
 '<GITHUB-AUTH>',
 base64.b64encode(
 '{0}:{1}'.format(username, password).encode('utf-8')
)
)

Note

Obviously you can refactor this a bit so you can pull those environment
variables out in only one place, but I’d rather be clear than not here.

The first time you run the test script you would invoke your tests like so:

$ USERNAME='my-real-username' PASSWORD='supersecretep@55w0rd' \
 python test_script.py

Future runs of the script could simply be run without those environment
variables, e.g.,

$ python test_script.py

This means that you can run these tests on a service like Travis-CI without
providing credentials.

In the event that you can not anticipate what you will need to filter out,
version 0.7.0 of Betamax adds before_record and before_playback hooks.
These two hooks both will pass the
Interaction and
Cassette to the function provided. An
example callback would look like:

def hook(interaction, cassette):
 pass

You would then register this callback:

Either
config.before_record(callback=hook)
Or
config.before_playback(callback=hook)

You can register callables for both hooks. If you wish to ignore an
interaction and prevent it from being recorded or replayed, you can call the
ignore(). You also have full
access to all of the methods and attributes on an instance of an Interaction.
This will allow you to inspect the response produced by the interaction and
then modify it. Let’s say, for example, that you are talking to an API that
grants authorization tokens on a specific request. In this example, you might
authenticate initially using a username and password and then use a token
after authenticating. You want, however, for the token to be kept secret. In
that case you might configure Betamax to replace the username and password,
e.g.,

config.define_cassette_placeholder('<USERNAME>', username)
config.define_cassette_placeholder('<PASSWORD>', password)

And you would also write a function that, prior to recording, finds the token,
saves it, and obscures it from the recorded version of the cassette:

from betamax.cassette import cassette

def sanitize_token(interaction, current_cassette):
 # Exit early if the request did not return 200 OK because that's the
 # only time we want to look for Authorization-Token headers
 if interaction.data['response']['status']['code'] != 200:
 return

 headers = interaction.data['response']['headers']
 token = headers.get('Authorization-Token')
 # If there was no token header in the response, exit
 if token is None:
 return

 # Otherwise, create a new placeholder so that when cassette is saved,
 # Betamax will replace the token with our placeholder.
 current_cassette.placeholders.append(
 cassette.Placeholder(placeholder='<AUTH_TOKEN>', replace=token)
)

This will dynamically create a placeholder for that cassette only. Once we
have our hook, we need merely register it like so:

config.before_record(callback=sanitize_token)

And we no longer need to worry about leaking sensitive data.

In addition to the before_record and before_playback hooks,
version 0.9.0 of Betamax adds after_start() and before_stop()
hooks. These two hooks both will pass the current
Cassette to the callback function provided.
Register these hooks like so:

def hook(cassette):
 if cassette.is_recording():
 print("This cassette is recording!")

Either
config.after_start(callback=hook)
Or
config.before_stop(callback=hook)

These hooks are useful for performing configuration actions external to Betamax
at the time Betamax is invoked, such as setting up correct authentication to
an API so that the recording will not encounter any errors.

Setting default serializer

If you want to use a specific serializer for every cassette, you can set
serialize_with as a default cassette option. For example, if you wanted to
use the prettyjson serializer for every cassette you would do:

config.default_cassette_options['serialize_with'] = 'prettyjson'

Per-Use Configuration

Each time you create a Betamax instance or use
use_cassette(), you can pass some of the options from
above.

Setting the Directory in which Betamax Should Store Cassette Files

When using per-use configuration of Betamax, you can specify the cassette
directory when you instantiate a Betamax object:

session = requests.Session()
recorder = betamax.Betamax(session,
 cassette_library_dir='tests/cassettes/')

Setting Default Cassette Options

You can also set default cassette options when instantiating a
Betamax object:

session = requests.Session()
recorder = betamax.Betamax(session, default_cassette_options={
 'record_mode': 'once',
 'match_requests_on': ['method', 'uri', 'headers'],
 'preserve_exact_body_bytes': True
})

You can also set the above when calling use_cassette():

session = requests.Session()
recorder = betamax.Betamax(session)
with recorder.use_cassette('cassette-name',
 preserve_exact_body_bytes=True,
 match_requests_on=['method', 'uri', 'headers'],
 record='once'):
 session.get('https://httpbin.org/get')

Filtering Sensitive Data

Filtering sensitive data on a per-usage basis is the only difficult (or
perhaps, less convenient) case. Cassette placeholders are part of the default
cassette options, so we’ll set this value similarly to how we set the other
default cassette options, the catch is that placeholders have a specific
structure. Placeholders are stored as a list of dictionaries. Let’s use our
example above and convert it.

import base64

username = os.environ.get('USERNAME', 'testuser')
password = os.environ.get('PASSWORD', 'testpassword')
session = requests.Session()

recorder = betamax.Betamax(session, default_cassette_options={
 'placeholders': [{
 'placeholder': '<GITHUB-AUTH>',
 'replace': base64.b64encode(
 '{0}:{1}'.format(username, password).encode('utf-8')
),
 }]
})

Note that what we passed as our first argument is assigned to the
'placeholder' key while the value we’re replacing is assigned to the
'replace' key.

This isn’t the typical way that people filter sensitive data because they tend
to want to do it globally.

Mixing and Matching

It’s not uncommon to mix and match configuration methodologies. I do this in
github3.py [https://github.com/sigmavirus24/github3.py]. I use global configuration to filter sensitive data and set
defaults based on the environment the tests are running in. On Travis-CI, the
record mode is set to 'none'. I also set how we match requests and when we
preserve exact body bytes on a per-use basis.

Record Modes

Betamax, like VCR [https://relishapp.com/vcr/vcr], has four modes that it can use to record cassettes:

	'all'

	'new_episodes'

	'none'

	'once'

You can only ever use one record mode. Below are explanations and examples of
each record mode. The explanations are blatantly taken from VCR’s own Record
Modes documentation [https://relishapp.com/vcr/vcr/v/2-9-3/docs/record-modes/].

All

The 'all' record mode will:

	Record new interactions.

	Never replay previously recorded interactions.

This can be temporarily used to force VCR to re-record a cassette (i.e., to
ensure the responses are not out of date) or can be used when you simply want
to log all HTTP requests.

Given our file, examples/record_modes/all/example.py,

import betamax
import requests

CASSETTE_LIBRARY_DIR = 'examples/record_modes/all/'

def main():
 session = requests.Session()
 recorder = betamax.Betamax(
 session, cassette_library_dir=CASSETTE_LIBRARY_DIR
)

 with recorder.use_cassette('all-example', record='all'):
 session.get('https://httpbin.org/get')
 session.post('https://httpbin.org/post',
 params={'id': '20'},
 json={'some-attribute': 'some-value'})
 session.get('https://httpbin.org/get', params={'id': '20'})

if __name__ == '__main__':
 main()

Every time we run it, our cassette
(examples/record_modes/all/all-example.json) will be updated with new
values.

New Episodes

The 'new_episodes' record mode will:

	Record new interactions.

	Replay previously recorded interactions.

It is similar to the 'once' record mode, but will always record new
interactions, even if you have an existing recorded one that is similar
(but not identical, based on the :match_request_on option).

Given our file, examples/record_modes/new_episodes/example_original.py,
with which we have already recorded
examples/record_modes/new_episodes/new-episodes-example.json

import betamax
import requests

CASSETTE_LIBRARY_DIR = 'examples/record_modes/new_episodes/'

def main():
 session = requests.Session()
 recorder = betamax.Betamax(
 session, cassette_library_dir=CASSETTE_LIBRARY_DIR
)

 with recorder.use_cassette('new-episodes-example', record='new_episodes'):
 session.get('https://httpbin.org/get')
 session.post('https://httpbin.org/post',
 params={'id': '20'},
 json={'some-attribute': 'some-value'})
 session.get('https://httpbin.org/get', params={'id': '20'})

if __name__ == '__main__':
 main()

If we then run examples/record_modes/new_episodes/example_updated.py

import betamax
import requests

CASSETTE_LIBRARY_DIR = 'examples/record_modes/new_episodes/'

def main():
 session = requests.Session()
 recorder = betamax.Betamax(
 session, cassette_library_dir=CASSETTE_LIBRARY_DIR
)

 with recorder.use_cassette('new-episodes-example', record='new_episodes'):
 session.get('https://httpbin.org/get')
 session.post('https://httpbin.org/post',
 params={'id': '20'},
 json={'some-attribute': 'some-value'})
 session.get('https://httpbin.org/get', params={'id': '20'})
 session.get('https://httpbin.org/get', params={'id': '40'})

if __name__ == '__main__':
 main()

The new request at the end of the file will be added to the cassette without
updating the other interactions that were already recorded.

None

The 'none' record mode will:

	Replay previously recorded interactions.

	Cause an error to be raised for any new requests.

This is useful when your code makes potentially dangerous HTTP requests. The
'none' record mode guarantees that no new HTTP requests will be made.

Given our file, examples/record_modes/none/example_original.py, with a
cassette that already has interactions recorded in
examples/record_modes/none/none-example.json

import betamax
import requests

CASSETTE_LIBRARY_DIR = 'examples/record_modes/none/'

def main():
 session = requests.Session()
 recorder = betamax.Betamax(
 session, cassette_library_dir=CASSETTE_LIBRARY_DIR
)

 with recorder.use_cassette('none-example', record='none'):
 session.get('https://httpbin.org/get')
 session.post('https://httpbin.org/post',
 params={'id': '20'},
 json={'some-attribute': 'some-value'})
 session.get('https://httpbin.org/get', params={'id': '20'})

if __name__ == '__main__':
 main()

If we then run examples/record_modes/none/example_updated.py

import betamax
import requests

CASSETTE_LIBRARY_DIR = 'examples/record_modes/none/'

def main():
 session = requests.Session()
 recorder = betamax.Betamax(
 session, cassette_library_dir=CASSETTE_LIBRARY_DIR
)

 with recorder.use_cassette('none-example', record='none'):
 session.get('https://httpbin.org/get')
 session.post('https://httpbin.org/post',
 params={'id': '20'},
 json={'some-attribute': 'some-value'})
 session.get('https://httpbin.org/get', params={'id': '20'})
 session.get('https://httpbin.org/get', params={'id': '40'})

if __name__ == '__main__':
 main()

We’ll see an exception indicating that new interactions were prevented:

Traceback (most recent call last):
 File "examples/record_modes/none/example_updated.py", line 23, in <module>
 main()
 File "examples/record_modes/none/example_updated.py", line 19, in main
 session.get('https://httpbin.org/get', params={'id': '40'})
 File "/usr/local/lib/python2.7/site-packages/requests/sessions.py", line 477, in get
 return self.request('GET', url, **kwargs)
 File "/usr/local/lib/python2.7/site-packages/requests/sessions.py", line 465, in request
 resp = self.send(prep, **send_kwargs)
 File "/usr/local/lib/python2.7/site-packages/requests/sessions.py", line 573, in send
 r = adapter.send(request, **kwargs)
 File "/usr/local/lib/python2.7/site-packages/betamax/adapter.py", line 91, in send
 self.cassette))
betamax.exceptions.BetamaxError: A request was made that could not be handled.

A request was made to https://httpbin.org/get?id=40 that could not be found in none-example.

The settings on the cassette are:

 - record_mode: none
 - match_options ['method', 'uri'].

Once

The 'once' record mode will:

	Replay previously recorded interactions.

	Record new interactions if there is no cassette file.

	Cause an error to be raised for new requests if there is a cassette file.

It is similar to the 'new_episodes' record mode, but will prevent new,
unexpected requests from being made (i.e. because the request URI changed
or whatever).

'once' is the default record mode, used when you do not set one.

If we have a file, examples/record_modes/once/example_original.py,

import betamax
import requests

CASSETTE_LIBRARY_DIR = 'examples/record_modes/once/'

def main():
 session = requests.Session()
 recorder = betamax.Betamax(
 session, cassette_library_dir=CASSETTE_LIBRARY_DIR
)

 with recorder.use_cassette('once-example', record='once'):
 session.get('https://httpbin.org/get')
 session.post('https://httpbin.org/post',
 params={'id': '20'},
 json={'some-attribute': 'some-value'})
 session.get('https://httpbin.org/get', params={'id': '20'})

if __name__ == '__main__':
 main()

And we run it, we’ll see a cassette named
examples/record_modes/once/once-example.json has been created.

If we then run examples/record_modes/once/example_updated.py,

import betamax
import requests

CASSETTE_LIBRARY_DIR = 'examples/record_modes/once/'

def main():
 session = requests.Session()
 recorder = betamax.Betamax(
 session, cassette_library_dir=CASSETTE_LIBRARY_DIR
)

 with recorder.use_cassette('once-example', record='once'):
 session.get('https://httpbin.org/get')
 session.post('https://httpbin.org/post',
 params={'id': '20'},
 json={'some-attribute': 'some-value'})
 session.get('https://httpbin.org/get', params={'id': '20'})
 session.get('https://httpbin.org/get', params={'id': '40'})

if __name__ == '__main__':
 main()

We’ll see an exception similar to the one we see when using the 'none'
record mode.

Traceback (most recent call last):
 File "examples/record_modes/once/example_updated.py", line 23, in <module>
 main()
 File "examples/record_modes/once/example_updated.py", line 19, in main
 session.get('https://httpbin.org/get', params={'id': '40'})
 File "/usr/local/lib/python2.7/site-packages/requests/sessions.py", line 477, in get
 return self.request('GET', url, **kwargs)
 File "/usr/local/lib/python2.7/site-packages/requests/sessions.py", line 465, in request
 resp = self.send(prep, **send_kwargs)
 File "/usr/local/lib/python2.7/site-packages/requests/sessions.py", line 573, in send
 r = adapter.send(request, **kwargs)
 File "/usr/local/lib/python2.7/site-packages/betamax/adapter.py", line 91, in send
 self.cassette))
betamax.exceptions.BetamaxError: A request was made that could not be handled.

A request was made to https://httpbin.org/get?id=40 that could not be found in none-example.

The settings on the cassette are:

 - record_mode: once
 - match_options ['method', 'uri'].

Third-Party Packages

Betamax was created to be a very close imitation of VCR [https://relishapp.com/vcr/vcr]. As such, it has
the default set of request matchers and a subset of the supported cassette
serializers for VCR.

As part of my own usage of Betamax, and supporting other people’s usage of
Betamax, I’ve created (and maintain) two third party packages that provide
extra request matchers and cassette serializers.

	betamax-matchers [https://pypi.python.org/pypi/betamax-matchers]

	betamax-serializers [https://pypi.python.org/pypi/betamax-serializers]

For simplicity, those modules will be documented here instead of on their own
documentation sites.

Request Matchers

There are three third-party request matchers provided by the
betamax-matchers [https://pypi.python.org/pypi/betamax-matchers] package:

	URLEncodedBodyMatcher,
'form-urlencoded-body'

	JSONBodyMatcher, 'json-body'

	MultipartFormDataBodyMatcher,
'multipart-form-data-body'

In order to use any of these we have to register them with Betamax. Below we
will register all three but you do not need to do that if you only need to use
one:

import betamax
from betamax_matchers import form_urlencoded
from betamax_matchers import json_body
from betamax_matchers import multipart

betamax.Betamax.register_request_matcher(
 form_urlencoded.URLEncodedBodyMatcher
)
betamax.Betamax.register_request_matcher(
 json_body.JSONBodyMatcher
)
betamax.Betamax.register_request_matcher(
 multipart.MultipartFormDataBodyMatcher
)

All of these classes inherit from betamax.BaseMatcher which means
that each needs a name that will be used when specifying what matchers to use
with Betamax. I have noted those next to the class name for each matcher
above. Let’s use the JSON body matcher in an example though:

import betamax
from betamax_matchers import json_body
This example requires at least requests 2.5.0
import requests

betamax.Betamax.register_request_matcher(
 json_body.JSONBodyMatcher
)

def main():
 session = requests.Session()
 recorder = betamax.Betamax(session, cassette_library_dir='.')
 url = 'https://httpbin.org/post'
 json_data = {'key': 'value',
 'other-key': 'other-value',
 'yet-another-key': 'yet-another-value'}
 matchers = ['method', 'uri', 'json-body']

 with recorder.use_cassette('json-body-example', match_requests_on=matchers):
 r = session.post(url, json=json_data)

if __name__ == '__main__':
 main()

If we ran that request without those matcher with hash seed randomization,
then we would occasionally receive exceptions that a request could not be
matched. That is because dictionaries are not inherently ordered so the body
string of the request can change and be any of the following:

{"key": "value", "other-key": "other-value", "yet-another-key":
"yet-another-value"}

{"key": "value", "yet-another-key": "yet-another-value", "other-key":
"other-value"}

{"other-key": "other-value", "yet-another-key": "yet-another-value",
"key": "value"}

{"yet-another-key": "yet-another-value", "key": "value", "other-key":
"other-value"}

{"yet-another-key": "yet-another-value", "other-key": "other-value",
"key": "value"}

{"other-key": "other-value", "key": "value", "yet-another-key":
"yet-another-value"}

But using the 'json-body' matcher, the matcher will parse the request and
compare python dictionaries instead of python strings. That will completely
bypass the issues introduced by hash randomization. I use this matcher
extensively in github3.py [https://github.com/sigmavirus24/github3.py]’s tests.

Cassette Serializers

By default, Betamax only comes with the JSON serializer.
betamax-serializers [https://pypi.python.org/pypi/betamax-serializers] provides extra serializer classes that users have
contributed.

For example, as we’ve seen elsewhere in our documentation, the default JSON
serializer does not create beautiful or easy to read cassettes. As a
substitute for that, we have the
PrettyJSONSerializer that does that
for you.

from betamax import Betamax
from betamax_serializers import pretty_json

import requests

Betamax.register_serializer(pretty_json.PrettyJSONSerializer)

session = requests.Session()
recorder = Betamax(session)
with recorder.use_cassette('testpretty', serialize_with='prettyjson'):
 session.request(method=method, url=url, ...)

This will give us a pretty-printed cassette like:

{
 "http_interactions": [
 {
 "recorded_at": "2015-06-21T19:22:54",
 "request": {
 "body": {
 "encoding": "utf-8",
 "string": ""
 },
 "headers": {
 "Accept": [
 "*/*"
],
 "Accept-Encoding": [
 "gzip, deflate"
],
 "Connection": [
 "keep-alive"
],
 "User-Agent": [
 "python-requests/2.7.0 CPython/2.7.9 Darwin/14.1.0"
]
 },
 "method": "GET",
 "uri": "https://httpbin.org/get"
 },
 "response": {
 "body": {
 "encoding": null,
 "string": "{\n \"args\": {}, \n \"headers\": {\n \"Accept\": \"*/*\", \n \"Accept-Encoding\": \"gzip, deflate\", \n \"Host\": \"httpbin.org\", \n \"User-Agent\": \"python-requests/2.7.0 CPython/2.7.9 Darwin/14.1.0\"\n }, \n \"origin\": \"127.0.0.1\", \n \"url\": \"https://httpbin.org/get\"\n}\n"
 },
 "headers": {
 "access-control-allow-credentials": [
 "true"
],
 "access-control-allow-origin": [
 "*"
],
 "connection": [
 "keep-alive"
],
 "content-length": [
 "265"
],
 "content-type": [
 "application/json"
],
 "date": [
 "Sun, 21 Jun 2015 19:22:54 GMT"
],
 "server": [
 "nginx"
]
 },
 "status": {
 "code": 200,
 "message": "OK"
 },
 "url": "https://httpbin.org/get"
 }
 },
 {
 "recorded_at": "2015-06-21T19:22:54",
 "request": {
 "body": {
 "encoding": "utf-8",
 "string": "{\"some-attribute\": \"some-value\"}"
 },
 "headers": {
 "Accept": [
 "*/*"
],
 "Accept-Encoding": [
 "gzip, deflate"
],
 "Connection": [
 "keep-alive"
],
 "Content-Length": [
 "32"
],
 "Content-Type": [
 "application/json"
],
 "User-Agent": [
 "python-requests/2.7.0 CPython/2.7.9 Darwin/14.1.0"
]
 },
 "method": "POST",
 "uri": "https://httpbin.org/post?id=20"
 },
 "response": {
 "body": {
 "encoding": null,
 "string": "{\n \"args\": {\n \"id\": \"20\"\n }, \n \"data\": \"{\\\"some-attribute\\\": \\\"some-value\\\"}\", \n \"files\": {}, \n \"form\": {}, \n \"headers\": {\n \"Accept\": \"*/*\", \n \"Accept-Encoding\": \"gzip, deflate\", \n \"Content-Length\": \"32\", \n \"Content-Type\": \"application/json\", \n \"Host\": \"httpbin.org\", \n \"User-Agent\": \"python-requests/2.7.0 CPython/2.7.9 Darwin/14.1.0\"\n }, \n \"json\": {\n \"some-attribute\": \"some-value\"\n }, \n \"origin\": \"127.0.0.1\", \n \"url\": \"https://httpbin.org/post?id=20\"\n}\n"
 },
 "headers": {
 "access-control-allow-credentials": [
 "true"
],
 "access-control-allow-origin": [
 "*"
],
 "connection": [
 "keep-alive"
],
 "content-length": [
 "495"
],
 "content-type": [
 "application/json"
],
 "date": [
 "Sun, 21 Jun 2015 19:22:54 GMT"
],
 "server": [
 "nginx"
]
 },
 "status": {
 "code": 200,
 "message": "OK"
 },
 "url": "https://httpbin.org/post?id=20"
 }
 },
 {
 "recorded_at": "2015-06-21T19:22:54",
 "request": {
 "body": {
 "encoding": "utf-8",
 "string": ""
 },
 "headers": {
 "Accept": [
 "*/*"
],
 "Accept-Encoding": [
 "gzip, deflate"
],
 "Connection": [
 "keep-alive"
],
 "User-Agent": [
 "python-requests/2.7.0 CPython/2.7.9 Darwin/14.1.0"
]
 },
 "method": "GET",
 "uri": "https://httpbin.org/get?id=20"
 },
 "response": {
 "body": {
 "encoding": null,
 "string": "{\n \"args\": {\n \"id\": \"20\"\n }, \n \"headers\": {\n \"Accept\": \"*/*\", \n \"Accept-Encoding\": \"gzip, deflate\", \n \"Host\": \"httpbin.org\", \n \"User-Agent\": \"python-requests/2.7.0 CPython/2.7.9 Darwin/14.1.0\"\n }, \n \"origin\": \"127.0.0.1\", \n \"url\": \"https://httpbin.org/get?id=20\"\n}\n"
 },
 "headers": {
 "access-control-allow-credentials": [
 "true"
],
 "access-control-allow-origin": [
 "*"
],
 "connection": [
 "keep-alive"
],
 "content-length": [
 "289"
],
 "content-type": [
 "application/json"
],
 "date": [
 "Sun, 21 Jun 2015 19:22:54 GMT"
],
 "server": [
 "nginx"
]
 },
 "status": {
 "code": 200,
 "message": "OK"
 },
 "url": "https://httpbin.org/get?id=20"
 }
 }
],
 "recorded_with": "betamax/0.4.2"
}

Usage Patterns

Below are suggested patterns for using Betamax efficiently.

Configuring Betamax in py.test’s conftest.py

Betamax and github3.py (the project which instigated the creation of Betamax)
both utilize py.test [http://pytest.org/latest/] and its feature of configuring how the tests run with
conftest.py 1. One pattern that I have found useful is to include this
in your conftest.py file:

import betamax

with betamax.Betamax.configure() as config:
 config.cassette_library_dir = 'tests/cassettes/'

This configures your cassette directory for all of your tests. If you do not
check your cassettes into your version control system, then you can also add:

import os

if not os.path.exists('tests/cassettes'):
 os.makedirs('tests/cassettes')

An Example from github3.py

You can configure other aspects of Betamax via the conftest.py file. For
example, in github3.py, I do the following:

import os

record_mode = 'none' if os.environ.get('TRAVIS_GH3') else 'once'

with betamax.Betamax.configure() as config:
 config.cassette_library_dir = 'tests/cassettes/'
 config.default_cassette_options['record_mode'] = record_mode
 config.define_cassette_placeholder(
 '<AUTH_TOKEN>',
 os.environ.get('GH_AUTH', 'x' * 20)
)

In essence, if the tests are being run on Travis CI [https://travis-ci.org/], then we want to make
sure to not try to record new cassettes or interactions. We also, want to
ensure we’re authenticated when possible but that we do not leave our
placeholder in the cassettes when they’re replayed.

Using Human Readable JSON Cassettes

Using the PrettyJSONSerializer provided by the betamax_serializers
package provides human readable JSON cassettes. Cassettes output in this way
make it easy to compare modifications to cassettes to ensure only expected
changes are introduced.

While you can use the serialize_with option when creating each individual
cassette, it is simpler to provide this setting globally. The following example
demonstrates how to configure Betamax to use the PrettyJSONSerializer for
all newly created cassettes:

from betamax_serializers import pretty_json
betamax.Betamax.register_serializer(pretty_json.PrettyJSONSerializer)
...
config.default_cassette_options['serialize_with'] = 'prettyjson'

Updating Existing Betamax Cassettes to be Human Readable

If you already have a library of cassettes when applying the previous
configuration update, then you will probably want to also update all your
existing cassettes into the new human readable format. The following script
will help you transform your existing cassettes:

import os
import glob
import json
import sys

try:
 cassette_dir = sys.argv[1]
 cassettes = glob.glob(os.path.join(cassette_dir, '*.json'))
except:
 print('Usage: {0} CASSETTE_DIRECTORY'.format(sys.argv[0]))
 sys.exit(1)

for cassette_path in cassettes:
 with open(cassette_path, 'r') as fp:
 data = json.load(fp)
 with open(cassette_path, 'w') as fp:
 json.dump(data, fp, sort_keys=True, indent=2,
 separators=(',', ': '))
print('Updated {0} cassette{1}.'.format(
 len(cassettes), '' if len(cassettes) == 1 else 's'))

Copy and save the above script as fix_cassettes.py and then run it like:

python fix_cassettes.py PATH_TO_CASSETTE_DIRECTORY

If you’re not already using a version control system (e.g., git, svn) then it
is recommended you make a backup of your cassettes first in the event something
goes wrong.

	1

	http://pytest.org/latest/plugins.html

Integrating Betamax with Test Frameworks

It’s nice to have a way to integrate libraries you use for testing into your
testing frameworks. Having considered this, the authors of and contributors to
Betamax have included integrations in the package. Betamax comes with
integrations for py.test and unittest. (If you need an integration for another
framework, please suggest it and send a patch!)

PyTest Integration

New in version 0.5.0.

Changed in version 0.6.0.

When you install Betamax, it now installs two py.test [http://pytest.org/latest/] fixtures by default.
To use it in your tests you need only follow the instructions [http://pytest.org/latest/fixture.html#using-fixtures-from-classes-modules-or-projects] on pytest’s
documentation. To use the betamax_session fixture for an entire class of
tests you would do:

tests/test_http_integration.py
import pytest

@pytest.mark.usefixtures('betamax_session')
class TestMyHttpClient:
 def test_get(self, betamax_session):
 betamax_session.get('https://httpbin.org/get')

This will generate a cassette name for you, e.g.,
tests.test_http_integration.TestMyHttpClient.test_get. After running this
test you would have a cassette file stored in your cassette library directory
named tests.test_http_integration.TestMyHttpClient.test_get.json. To use
this fixture at the module level, you need only do

tests/test_http_integration.py
import pytest

pytest.mark.usefixtures('betamax_session')

class TestMyHttpClient:
 def test_get(self, betamax_session):
 betamax_session.get('https://httpbin.org/get')

class TestMyOtherHttpClient:
 def test_post(self, betamax_session):
 betamax_session.post('https://httpbin.org/post')

If you need to customize the recorder object, however, you can instead use the
betamax_recorder fixture:

tests/test_http_integration.py
import pytest

pytest.mark.usefixtures('betamax_recorder')

class TestMyHttpClient:
 def test_post(self, betamax_recorder):
 betamax_recorder.current_cassette.match_options.add('json-body')
 session = betamax_recorder.session

 session.post('https://httpbin.org/post', json={'foo': 'bar'})

Unittest Integration

New in version 0.5.0.

When writing tests with unittest, a common pattern is to either import
unittest.TestCase [https://docs.python.org/3.6/library/unittest.html#unittest.TestCase] or subclass that and use that subclass in your
tests. When integrating Betamax with your unittest testsuite, you should do
the following:

from betamax.fixtures import unittest

class IntegrationTestCase(unittest.BetamaxTestCase):
 # Add the rest of the helper methods you want for your
 # integration tests

class SpecificTestCase(IntegrationTestCase):
 def test_something(self):
 # Test something

The unittest integration provides the following attributes on the test case
instance:

	session the instance of BetamaxTestCase.SESSION_CLASS created for
that test.

	recorder the instance of betamax.Betamax created.

The integration also generates a cassette name from the test case class name
and test method. So the cassette generated for the above example would be
named SpecificTestCase.test_something. To override that behaviour, you
need to override the
generate_cassette_name() method in
your subclass.

The default path to save cassette is ./vcr/cassettes.
To override the path uses the follow code at the top of file.

with betamax.Betamax.configure() as config:
 config.cassette_library_dir = 'your/path/here'

If you are subclassing requests.Session [https://docs.python-requests.org/en/latest/api/#requests.Session] in your application, then it
follows that you will want to use that in your tests. To facilitate this, you
can set the SESSION_CLASS attribute. To give a fuller example, let’s say
you’re changing the default cassette name and you’re providing your own
session class, your code might look like:

from betamax.fixtures import unittest

from myapi import session

class IntegrationTestCase(unittest.BetamaxTestCase):
 # Add the rest of the helper methods you want for your
 # integration tests
 SESSION_CLASS = session.MyApiSession

 def generate_cassette_name(self):
 classname = self.__class__.__name__
 method = self._testMethodName
 return 'integration_{0}_{1}'.format(classname, method)

API

	
class betamax.Betamax(session, cassette_library_dir=None, default_cassette_options={})

	This object contains the main API of the request-vcr library.

This object is entirely a context manager so all you have to do is:

s = requests.Session()
with Betamax(s) as vcr:
 vcr.use_cassette('example')
 r = s.get('https://httpbin.org/get')

Or more concisely, you can do:

s = requests.Session()
with Betamax(s).use_cassette('example') as vcr:
 r = s.get('https://httpbin.org/get')

This object allows for the user to specify the cassette library directory
and default cassette options.

s = requests.Session()
with Betamax(s, cassette_library_dir='tests/cassettes') as vcr:
 vcr.use_cassette('example')
 r = s.get('https://httpbin.org/get')

with Betamax(s, default_cassette_options={
 're_record_interval': 1000
 }) as vcr:
 vcr.use_cassette('example')
 r = s.get('https://httpbin.org/get')

	
betamax_adapter = None

	Create a new adapter to replace the existing ones

	
static configure()

	Help to configure the library as a whole.

with Betamax.configure() as config:
 config.cassette_library_dir = 'tests/cassettes/'
 config.default_cassette_options['match_options'] = [
 'method', 'uri', 'headers'
]

	
current_cassette

	Return the cassette that is currently in use.

	Returns

	Cassette

	
http_adapters = None

	Store the session’s original adapters.

	
static register_request_matcher(matcher_class)

	Register a new request matcher.

	Parameters

	matcher_class – (required), this must sub-class
BaseMatcher

	
static register_serializer(serializer_class)

	Register a new serializer.

	Parameters

	matcher_class – (required), this must sub-class
BaseSerializer

	
session = None

	Store the requests.Session object being wrapped.

	
start()

	Start recording or replaying interactions.

	
stop()

	Stop recording or replaying interactions.

	
use_cassette(cassette_name, **kwargs)

	Tell Betamax which cassette you wish to use for the context.

	Parameters

	
	cassette_name (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – relative name, without the serialization
format, of the cassette you wish Betamax would use

	serialize_with (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – the format you want Betamax to serialize
the cassette with

	serialize (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – DEPRECATED the format you want Betamax to
serialize the request and response data to and from

	
betamax.decorator.use_cassette(cassette_name, cassette_library_dir=None, default_cassette_options={}, **use_cassette_kwargs)

	Provide a Betamax-wrapped Session for convenience.

New in version 0.5.0.

This decorator can be used to get a plain Session that has been wrapped in
Betamax. For example,

from betamax.decorator import use_cassette

@use_cassette('example-decorator', cassette_library_dir='.')
def test_get(session):
 # do things with session

	Parameters

	
	cassette_name (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – Name of the cassette file in which interactions will be stored.

	cassette_library_dir (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – Directory in which cassette files will be stored.

	default_cassette_options (dict [https://docs.python.org/3.6/library/stdtypes.html#dict]) – Dictionary of default cassette options to set for the cassette used
when recording these interactions.

	**use_cassette_kwargs – Keyword arguments passed to use_cassette()

	
class betamax.configure.Configuration

	This object acts as a proxy to configure different parts of Betamax.

You should only ever encounter this object when configuring the library as
a whole. For example:

with Betamax.configure() as config:
 config.cassette_library_dir = 'tests/cassettes/'
 config.default_cassette_options['record_mode'] = 'once'
 config.default_cassette_options['match_requests_on'] = ['uri']
 config.define_cassette_placeholder('<URI>', 'http://httpbin.org')
 config.preserve_exact_body_bytes = True

	
after_start(callback=None)

	Register a function to call after Betamax is started.

Example usage:

def on_betamax_start(cassette):
 if cassette.is_recording():
 print("Setting up authentication...")

with Betamax.configure() as config:
 config.cassette_load(callback=on_cassette_load)

	Parameters

	callback (callable) – The function which accepts a cassette and might mutate
it before returning.

	
before_playback(tag=None, callback=None)

	Register a function to call before playing back an interaction.

Example usage:

def before_playback(interaction, cassette):
 pass

with Betamax.configure() as config:
 config.before_playback(callback=before_playback)

	Parameters

	
	tag (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – Limits the interactions passed to the function based on the
interaction’s tag (currently unsupported).

	callback (callable) – The function which either accepts just an interaction or an
interaction and a cassette and mutates the interaction before
returning.

	
before_record(tag=None, callback=None)

	Register a function to call before recording an interaction.

Example usage:

def before_record(interaction, cassette):
 pass

with Betamax.configure() as config:
 config.before_record(callback=before_record)

	Parameters

	
	tag (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – Limits the interactions passed to the function based on the
interaction’s tag (currently unsupported).

	callback (callable) – The function which either accepts just an interaction or an
interaction and a cassette and mutates the interaction before
returning.

	
before_stop(callback=None)

	Register a function to call before Betamax stops.

Example usage:

def on_betamax_stop(cassette):
 if not cassette.is_recording():
 print("Playback completed.")

with Betamax.configure() as config:
 config.cassette_eject(callback=on_betamax_stop)

	Parameters

	callback (callable) – The function which accepts a cassette and might mutate
it before returning.

	
cassette_library_dir

	Retrieve and set the directory to store the cassettes in.

	
default_cassette_options

	Retrieve and set the default cassette options.

The options include:

	match_requests_on

	placeholders

	re_record_interval

	record_mode

	preserve_exact_body_bytes

Other options will be ignored.

	
define_cassette_placeholder(placeholder, replace)

	Define a placeholder value for some text.

This also will replace the placeholder text with the text you wish it
to use when replaying interactions from cassettes.

	Parameters

	
	placeholder (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – (required), text to be used as a placeholder

	replace (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – (required), text to be replaced or replacing the
placeholder

A set of fixtures to integrate Betamax with py.test.

	
betamax.fixtures.pytest.betamax_session(betamax_recorder)

	Generate a session that has Betamax already installed.

See betamax_recorder fixture.

	Parameters

	betamax_recorder – A recorder fixture with a configured request session.

	Returns

	An instantiated requests Session wrapped by Betamax.

Minimal unittest.TestCase [https://docs.python.org/3.6/library/unittest.html#unittest.TestCase] subclass adding Betamax integration.

	
class betamax.fixtures.unittest.BetamaxTestCase(methodName='runTest')

	Betamax integration for unittest.

New in version 0.5.0.

	
CASSETTE_LIBRARY_DIR = None

	Custom path to save cassette.

	
SESSION_CLASS

	alias of requests.sessions.Session

	
generate_cassette_name()

	Generates a cassette name for the current test.

The default format is “%(classname)s.%(testMethodName)s”

To change the default cassette format, override this method in a
subclass.

	Returns

	Cassette name for the current test.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
setUp()

	Betamax-ified setUp fixture.

This will call the superclass’ setUp method first and then it will
create a new requests.Session [https://docs.python-requests.org/en/latest/api/#requests.Session] and wrap that in a Betamax
object to record it. At the end of setUp, it will start recording.

	
tearDown()

	Betamax-ified tearDown fixture.

This will call the superclass’ tearDown method first and then it
will stop recording interactions.

When using Betamax with unittest, you can use the traditional style of Betamax
covered in the documentation thoroughly, or you can use your fixture methods,
unittest.TestCase.setUp() [https://docs.python.org/3.6/library/unittest.html#unittest.TestCase.setUp] and unittest.TestCase.tearDown() [https://docs.python.org/3.6/library/unittest.html#unittest.TestCase.tearDown] to wrap
entire tests in Betamax.

Here’s how you might use it:

from betamax.fixtures import unittest

from myapi import SessionManager

class TestMyApi(unittest.BetamaxTestCase):
 def setUp(self):
 # Call BetamaxTestCase's setUp first to get a session
 super(TestMyApi, self).setUp()

 self.manager = SessionManager(self.session)

 def test_all_users(self):
 """Retrieve all users from the API."""
 for user in self.manager:
 # Make assertions or something

Alternatively, if you are subclassing a requests.Session [https://docs.python-requests.org/en/latest/api/#requests.Session] to provide
extra functionality, you can do something like this:

from betamax.fixtures import unittest

from myapi import Session, SessionManager

class TestMyApi(unittest.BetamaxTestCase):
 SESSION_CLASS = Session

 # See above ...

Examples

Basic Usage

Let example.json be a file in a directory called cassettes with the
content:

{
 "http_interactions": [
 {
 "request": {
 "body": {
 "string": "",
 "encoding": "utf-8"
 },
 "headers": {
 "User-Agent": ["python-requests/v1.2.3"]
 },
 "method": "GET",
 "uri": "https://httpbin.org/get"
 },
 "response": {
 "body": {
 "string": "example body",
 "encoding": "utf-8"
 },
 "headers": {},
 "status": {
 "code": 200,
 "message": "OK"
 },
 "url": "https://httpbin.org/get"
 }
 }
],
 "recorded_with": "betamax"
}

The following snippet will not raise any exceptions

from betamax import Betamax
from requests import Session

s = Session()

with Betamax(s, cassette_library_dir='cassettes') as betamax:
 betamax.use_cassette('example', record='none')
 r = s.get("https://httpbin.org/get")

On the other hand, this will raise an exception:

from betamax import Betamax
from requests import Session

s = Session()

with Betamax(s, cassette_library_dir='cassettes') as betamax:
 betamax.use_cassette('example', record='none')
 r = s.post("https://httpbin.org/post",
 data={"key": "value"})

Finally, we can also use a decorator in order to simplify things:

import unittest

from betamax.decorator import use_cassette

class TestExample(unittest.TestCase):
 @use_cassette('example', cassette_library_dir='cassettes')
 def test_example(self, session):
 session.get('https://httpbin.org/get')

Or if you're using something like py.test
@use_cassette('example', cassette_library_dir='cassettes')
def test_example_pytest(session):
 session.get('https://httpbin.org/get')

Opinions at Work

If you use requests’s default Accept-Encoding header, servers that
support gzip content encoding will return responses that Betamax cannot
serialize in a human-readable format. In this event, the cassette will look
like this:

{
 "http_interactions": [
 {
 "request": {
 "body": {
 "base64_string": "",
 "encoding": "utf-8"
 },
 "headers": {
 "User-Agent": ["python-requests/v1.2.3"]
 },
 "method": "GET",
 "uri": "https://httpbin.org/get"
 },
 "response": {
 "body": {
 "base64_string": "Zm9vIGJhcgo=",
 "encoding": "utf-8"
 },
 "headers": {
 "Content-Encoding": ["gzip"]
 },
 "status": {
 "code": 200,
 "message": "OK"
 },
 "url": "https://httpbin.org/get"
 }
 }
],
 "recorded_with": "betamax"
}

Forcing bytes to be preserved

You may want to force betamax to preserve the exact bytes in the body of a
response (or request) instead of relying on the opinions held by the
library. In this case you have two ways of telling betamax to do
this.

The first, is on a per-cassette basis, like so:

from betamax import Betamax
import requests

session = Session()

with Betamax.configure() as config:
 c.cassette_library_dir = '.'

with Betamax(session).use_cassette('some_cassette',
 preserve_exact_body_bytes=True):
 r = session.get('http://example.com')

On the other hand, you may want to the preserve exact body bytes for all
cassettes. In this case, you can do:

from betamax import Betamax
import requests

session = Session()

with Betamax.configure() as config:
 c.cassette_library_dir = '.'
 c.preserve_exact_body_bytes = True

with Betamax(session).use_cassette('some_cassette'):
 r = session.get('http://example.com')

What is a cassette?

A cassette is a set of recorded interactions serialized to a specific format.
Currently the only supported format is JSON [http://json.org]. A cassette has a list (or array)
of interactions and information about the library that recorded it. This means
that the cassette’s structure (using JSON) is

{
 "http_interactions": [
 // ...
],
 "recorded_with": "betamax"
}

Each interaction is the object representing the request and response as well
as the date it was recorded. The structure of an interaction is

{
 "request": {
 // ...
 },
 "response": {
 // ...
 },
 "recorded_at": "2013-09-28T01:25:38"
}

Each request has the body, method, uri, and an object representing the
headers. A serialized request looks like:

{
 "body": {
 "string": "...",
 "encoding": "utf-8"
 },
 "method": "GET",
 "uri": "http://example.com",
 "headers": {
 // ...
 }
}

A serialized response has the status_code, url, and objects
representing the headers and the body. A serialized response looks like:

{
 "body": {
 "encoding": "utf-8",
 "string": "..."
 },
 "url": "http://example.com",
 "status": {
 "code": 200,
 "message": "OK"
 },
 "headers": {
 // ...
 }
}

If you put everything together, you get:

{
 "http_interactions": [
 {
 "request": {
 {
 "body": {
 "string": "...",
 "encoding": "utf-8"
 },
 "method": "GET",
 "uri": "http://example.com",
 "headers": {
 // ...
 }
 }
 },
 "response": {
 {
 "body": {
 "encoding": "utf-8",
 "string": "..."
 },
 "url": "http://example.com",
 "status": {
 "code": 200,
 "message": "OK"
 },
 "headers": {
 // ...
 }
 }
 },
 "recorded_at": "2013-09-28T01:25:38"
 }
],
 "recorded_with": "betamax"
}

If you were to pretty-print a cassette, this is vaguely what you would see.
Keep in mind that since Python does not keep dictionaries ordered, the items
may not be in the same order as this example.

Note

Pro-tip You can pretty print a cassette like so:
python -m json.tool cassette.json.

What is a cassette library?

When configuring Betamax, you can choose your own cassette library directory.
This is the directory available from the current directory in which you want
to store your cassettes.

For example, let’s say that you set your cassette library to be
tests/cassettes/. In that case, when you record a cassette, it will be
saved there. To continue the example, let’s say you use the following code:

from requests import Session
from betamax import Betamax

s = Session()
with Betamax(s, cassette_library_dir='tests/cassettes').use_cassette('example'):
 r = s.get('https://httpbin.org/get')

You would then have the following directory structure:

.
`-- tests
 `-- cassettes
 `-- example.json

Implementation Details

Everything here is an implementation detail and subject to volatile change. I
would not rely on anything here for any mission critical code.

Gzip Content-Encoding

By default, requests sets an Accept-Encoding header value that includes
gzip (specifically, unless overridden, requests always sends
Accept-Encoding: gzip, deflate, compress). When a server supports this and
responds with a response that has the Content-Encoding header set to
gzip, urllib3 automatically decompresses the body for requests. This
can only be prevented in the case where the stream parameter is set to
True. Since Betamax refuses to alter the headers on the response object in
any way, we force stream to be True so we can capture the compressed
data before it is decompressed. We then properly repopulate the response
object so you perceive no difference in the interaction.

To preserve the response exactly as is, we then must base64 encode the
body of the response before saving it to the file object. In other words,
whenever a server responds with a compressed body, you will not have a human
readable response body. There is, at the present moment, no way to configure
this so that this does not happen and because of the way that Betamax works,
you can not remove the Content-Encoding header to prevent this from
happening.

Class Details

	
class betamax.cassette.Cassette(cassette_name, serialization_format, **kwargs)

	
	
cassette_name = None

	Short name of the cassette

	
earliest_recorded_date

	The earliest date of all of the interactions this cassette.

	
find_match(request)

	Find a matching interaction based on the matchers and request.

This uses all of the matchers selected via configuration or
use_cassette and passes in the request currently in progress.

	Parameters

	request – requests.PreparedRequest

	Returns

	Interaction

	
is_empty()

	Determine if the cassette was empty when loaded.

	
is_recording()

	Return whether the cassette is recording.

	
class betamax.cassette.Interaction(interaction, response=None)

	The Interaction object represents the entirety of a single interaction.

The interaction includes the date it was recorded, its JSON
representation, and the requests.Response object complete with its
request attribute.

This object also handles the filtering of sensitive data.

No methods or attributes on this object are considered public or part of
the public API. As such they are entirely considered implementation
details and subject to change. Using or relying on them is not wise or
advised.

	
as_response()

	Return the Interaction as a Response object.

	
deserialize()

	Turn a serialized interaction into a Response.

	
ignore()

	Ignore this interaction.

This is only to be used from a before_record or a before_playback
callback.

	
match(matchers)

	Return whether this interaction is a match.

	
replace(text_to_replace, placeholder)

	Replace sensitive data in this interaction.

	
replace_all(replacements, serializing)

	Easy way to accept all placeholders registered.

Matchers

You can specify how you would like Betamax to match requests you are making
with the recorded requests. You have the following options for default
(built-in) matchers:

	Matcher

	Behaviour

	body

	This matches by checking the equality of the request bodies.

	headers

	This matches by checking the equality of all of the request headers

	host

	This matches based on the host of the URI

	method

	This matches based on the method, e.g., GET, POST, etc.

	path

	This matches on the path of the URI

	query

	This matches on the query part of the URI

	uri

	This matches on the entirety of the URI

Default Matchers

By default, Betamax matches on uri and method.

Specifying Matchers

You can specify the matchers to be used in the entire library by configuring
Betamax like so:

import betamax

with betamax.Betamax.configure() as config:
 config.default_cassette_options['match_requests_on'].extend([
 'headers', 'body'
])

Instead of configuring global state, though, you can set it per cassette. For
example:

import betamax
import requests

session = requests.Session()
recorder = betamax.Betamax(session)
match_on = ['uri', 'method', 'headers', 'body']
with recorder.use_cassette('example', match_requests_on=match_on):
 # ...

Making Your Own Matcher

So long as you are matching requests, you can define your own way of matching.
Each request matcher has to inherit from betamax.BaseMatcher and implement
match.

	
class betamax.BaseMatcher

	Base class that ensures sub-classes that implement custom matchers can be
registered and have the only method that is required.

Usage:

from betamax import Betamax, BaseMatcher

class MyMatcher(BaseMatcher):
 name = 'my'

 def match(self, request, recorded_request):
 # My fancy matching algorithm

Betamax.register_request_matcher(MyMatcher)

The last line is absolutely necessary.

The match method will be given a requests.PreparedRequest object and a
dictionary. The dictionary always has the following keys:

	url

	method

	body

	headers

	
match(request, recorded_request)

	A method that must be implemented by the user.

	Parameters

	
	request (PreparedRequest) – A requests PreparedRequest object

	recorded_request (dict [https://docs.python.org/3.6/library/stdtypes.html#dict]) – A dictionary containing the serialized
request in the cassette

	Returns bool

	True if they match else False

	
on_init()

	Method to implement if you wish something to happen in __init__.

The return value is not checked and this is called at the end of
__init__. It is meant to provide the matcher author a way to
perform things during initialization of the instance that would
otherwise require them to override BaseMatcher.__init__.

Some examples of matchers are in the source reproduced here:

-*- coding: utf-8 -*-
from .base import BaseMatcher

class HeadersMatcher(BaseMatcher):
 # Matches based on the headers of the request
 name = 'headers'

 def match(self, request, recorded_request):
 return dict(request.headers) == self.flatten_headers(recorded_request)

 def flatten_headers(self, request):
 from betamax.util import from_list
 headers = request['headers'].items()
 return dict((k, from_list(v)) for (k, v) in headers)

-*- coding: utf-8 -*-
from .base import BaseMatcher
from requests.compat import urlparse

class HostMatcher(BaseMatcher):
 # Matches based on the host of the request
 name = 'host'

 def match(self, request, recorded_request):
 request_host = urlparse(request.url).netloc
 recorded_host = urlparse(recorded_request['uri']).netloc
 return request_host == recorded_host

-*- coding: utf-8 -*-
from .base import BaseMatcher

class MethodMatcher(BaseMatcher):
 # Matches based on the method of the request
 name = 'method'

 def match(self, request, recorded_request):
 return request.method == recorded_request['method']

-*- coding: utf-8 -*-
from .base import BaseMatcher
from requests.compat import urlparse

class PathMatcher(BaseMatcher):
 # Matches based on the path of the request
 name = 'path'

 def match(self, request, recorded_request):
 request_path = urlparse(request.url).path
 recorded_path = urlparse(recorded_request['uri']).path
 return request_path == recorded_path

-*- coding: utf-8 -*-
from .base import BaseMatcher
from requests.compat import urlparse

class PathMatcher(BaseMatcher):
 # Matches based on the path of the request
 name = 'path'

 def match(self, request, recorded_request):
 request_path = urlparse(request.url).path
 recorded_path = urlparse(recorded_request['uri']).path
 return request_path == recorded_path

-*- coding: utf-8 -*-
from .base import BaseMatcher
from .query import QueryMatcher
from requests.compat import urlparse

class URIMatcher(BaseMatcher):
 # Matches based on the uri of the request
 name = 'uri'

 def on_init(self):
 # Get something we can use to match query strings with
 self.query_matcher = QueryMatcher().match

 def match(self, request, recorded_request):
 queries_match = self.query_matcher(request, recorded_request)
 request_url, recorded_url = request.url, recorded_request['uri']
 return self.all_equal(request_url, recorded_url) and queries_match

 def parse(self, uri):
 parsed = urlparse(uri)
 return {
 'scheme': parsed.scheme,
 'netloc': parsed.netloc,
 'path': parsed.path,
 'fragment': parsed.fragment
 }

 def all_equal(self, new_uri, recorded_uri):
 new_parsed = self.parse(new_uri)
 recorded_parsed = self.parse(recorded_uri)
 return (new_parsed == recorded_parsed)

When you have finished writing your own matcher, you can instruct betamax to
use it like so:

import betamax

class MyMatcher(betamax.BaseMatcher):
 name = 'my'

 def match(self, request, recorded_request):
 return True

betamax.Betamax.register_request_matcher(MyMatcher)

To use it, you simply use the name you set like you use the name of the
default matchers, e.g.:

with Betamax(s).use_cassette('example', match_requests_on=['uri', 'my']):
 # ...

on_init

As you can see in the code for URIMatcher, we use on_init to
initialize an attribute on the URIMatcher instance. This method serves to
provide the matcher author with a different way of initializing the object
outside of the match method. This also means that the author does not have
to override the base class’ __init__ method.

Serializers

You can tell Betamax how you would like it to serialize the cassettes when
saving them to a file. By default Betamax will serialize your cassettes to
JSON. The only default serializer is the JSON serializer, but writing your own
is very easy.

Creating Your Own Serializer

Betamax handles the structuring of the cassette and writing to a file, your
serializer simply takes a dictionary and returns a string.

Every Serializer has to inherit from betamax.BaseSerializer and
implement three methods:

	betamax.BaseSerializer.generate_cassette_name which is a static method.
This will take the directory the user (you) wants to store the cassettes in
and the name of the cassette and generate the file name.

	betamax.BaseSerializer.serialize() is a method that takes the
dictionary and returns the dictionary serialized as a string

	betamax.BaseSerializer.deserialize() is a method that takes a
string and returns the data serialized in it as a dictionary.

New in version 0.9.0: Allow Serializers to indicate their format is a binary format via
stored_as_binary.

Additionally, if your Serializer is utilizing a binary format, you will want
to set the stored_as_binary attribute to True on your class.

	
class betamax.BaseSerializer

	Base Serializer class that provides an interface for other serializers.

Usage:

from betamax import Betamax, BaseSerializer

class MySerializer(BaseSerializer):
 name = 'my'

 @staticmethod
 def generate_cassette_name(cassette_library_dir, cassette_name):
 # Generate a string that will give the relative path of a
 # cassette

 def serialize(self, cassette_data):
 # Take a dictionary and convert it to whatever

 def deserialize(self, cassette_data):
 # Uses a cassette file to return a dictionary with the
 # cassette information

Betamax.register_serializer(MySerializer)

The last line is absolutely necessary.

	
deserialize(cassette_data)

	A method that must be implemented by the Serializer author.

The return value is extremely important. If it is not empty, the
dictionary returned must have the following structure:

{
 'http_interactions': [{
 # Interaction
 },
 {
 # Interaction
 }],
 'recorded_with': 'name of recorder'
}

	Params str cassette_data

	The data serialized as a string which needs
to be deserialized.

	Returns

	dictionary

	
on_init()

	Method to implement if you wish something to happen in __init__.

The return value is not checked and this is called at the end of
__init__. It is meant to provide the matcher author a way to
perform things during initialization of the instance that would
otherwise require them to override BaseSerializer.__init__.

	
serialize(cassette_data)

	A method that must be implemented by the Serializer author.

	Parameters

	cassette_data (dict [https://docs.python.org/3.6/library/stdtypes.html#dict]) – A dictionary with two keys:
http_interactions, recorded_with.

	Returns

	Serialized data as a string.

Here’s the default (JSON) serializer as an example:

from .base import BaseSerializer

import json
import os

class JSONSerializer(BaseSerializer):
 # Serializes and deserializes a cassette to JSON
 name = 'json'
 stored_as_binary = False

 @staticmethod
 def generate_cassette_name(cassette_library_dir, cassette_name):
 return os.path.join(cassette_library_dir,
 '{0}.{1}'.format(cassette_name, 'json'))

 def serialize(self, cassette_data):
 return json.dumps(cassette_data)

 def deserialize(self, cassette_data):
 try:
 deserialized_data = json.loads(cassette_data)
 except ValueError:
 deserialized_data = {}

 return deserialized_data

This is incredibly simple. We take advantage of the os.path [https://docs.python.org/3.6/library/os.path.html#module-os.path] to properly
join the directory name and the file name. Betamax uses this method to find an
existing cassette or create a new one.

Next we have the betamax.serializers.JSONSerializer.serialize() which
takes the cassette dictionary and turns it into a string for us. Here we are
just leveraging the json [https://docs.python.org/3.6/library/json.html#module-json] module and its ability to dump any valid
dictionary to a string.

Finally, there is the
betamax.serializers.JSONSerializer.deserialize() method which takes a
string and turns it into the dictionary that betamax needs to function.

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 betamax	

 	
 	
 betamax.fixtures.pytest	

 	
 	
 betamax.fixtures.unittest	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | M
 | O
 | R
 | S
 | T
 | U

A

 	
 	after_start() (betamax.configure.Configuration method)

 	
 	as_response() (betamax.cassette.Interaction method)

B

 	
 	BaseMatcher (class in betamax)

 	BaseSerializer (class in betamax)

 	before_playback() (betamax.configure.Configuration method)

 	before_record() (betamax.configure.Configuration method)

 	before_stop() (betamax.configure.Configuration method)

 	Betamax (class in betamax)

 	
 	betamax (module)

 	betamax.fixtures.pytest (module)

 	betamax.fixtures.unittest (module)

 	betamax_adapter (betamax.Betamax attribute)

 	betamax_session() (in module betamax.fixtures.pytest)

 	BetamaxTestCase (class in betamax.fixtures.unittest)

C

 	
 	Cassette (class in betamax.cassette)

 	cassette_library_dir (betamax.configure.Configuration attribute)

 	CASSETTE_LIBRARY_DIR (betamax.fixtures.unittest.BetamaxTestCase attribute)

 	
 	cassette_name (betamax.cassette.Cassette attribute)

 	Configuration (class in betamax.configure)

 	configure() (betamax.Betamax static method)

 	current_cassette (betamax.Betamax attribute)

D

 	
 	default_cassette_options (betamax.configure.Configuration attribute)

 	define_cassette_placeholder() (betamax.configure.Configuration method)

 	
 	deserialize() (betamax.BaseSerializer method)

 	(betamax.cassette.Interaction method)

E

 	
 	earliest_recorded_date (betamax.cassette.Cassette attribute)

F

 	
 	find_match() (betamax.cassette.Cassette method)

G

 	
 	generate_cassette_name() (betamax.fixtures.unittest.BetamaxTestCase method)

H

 	
 	http_adapters (betamax.Betamax attribute)

I

 	
 	ignore() (betamax.cassette.Interaction method)

 	Interaction (class in betamax.cassette)

 	
 	is_empty() (betamax.cassette.Cassette method)

 	is_recording() (betamax.cassette.Cassette method)

M

 	
 	match() (betamax.BaseMatcher method)

 	(betamax.cassette.Interaction method)

O

 	
 	on_init() (betamax.BaseMatcher method)

 	(betamax.BaseSerializer method)

R

 	
 	register_request_matcher() (betamax.Betamax static method)

 	register_serializer() (betamax.Betamax static method)

 	
 	replace() (betamax.cassette.Interaction method)

 	replace_all() (betamax.cassette.Interaction method)

S

 	
 	serialize() (betamax.BaseSerializer method)

 	session (betamax.Betamax attribute)

 	SESSION_CLASS (betamax.fixtures.unittest.BetamaxTestCase attribute)

 	
 	setUp() (betamax.fixtures.unittest.BetamaxTestCase method)

 	start() (betamax.Betamax method)

 	stop() (betamax.Betamax method)

T

 	
 	tearDown() (betamax.fixtures.unittest.BetamaxTestCase method)

U

 	
 	use_cassette() (betamax.Betamax method)

 	(in module betamax.decorator)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 betamax

 		
 Getting Started

 		
 Installation

 		
 Configuration

 		
 Recording Your First Cassette

 		
 Recording More Complex Cassettes

 		
 Long Term Usage Patterns

 		
 Adding New Requests to a Cassette

 		
 Option 1: Re-recording the Cassette

 		
 Option 2: Changing the Record Mode

 		
 Known Issues

 		
 Tests Periodically Slow Down

 		
 Configuring Betamax

 		
 Global Configuration

 		
 Setting the Directory in which Betamax Should Store Cassette Files

 		
 Setting Default Cassette Options

 		
 Filtering Sensitive Data

 		
 Setting default serializer

 		
 Per-Use Configuration

 		
 Setting the Directory in which Betamax Should Store Cassette Files

 		
 Setting Default Cassette Options

 		
 Filtering Sensitive Data

 		
 Mixing and Matching

 		
 Record Modes

 		
 All

 		
 New Episodes

 		
 None

 		
 Once

 		
 Third-Party Packages

 		
 Request Matchers

 		
 Cassette Serializers

 		
 Usage Patterns

 		
 Configuring Betamax in py.test’s conftest.py

 		
 An Example from github3.py

 		
 Using Human Readable JSON Cassettes

 		
 Updating Existing Betamax Cassettes to be Human Readable

 		
 Integrating Betamax with Test Frameworks

 		
 PyTest Integration

 		
 Unittest Integration

 		
 API

 		
 Examples

 		
 Basic Usage

 		
 Opinions at Work

 		
 Forcing bytes to be preserved

 		
 What is a cassette?

 		
 What is a cassette library?

 		
 Implementation Details

 		
 Gzip Content-Encoding

 		
 Class Details

 		
 Matchers

 		
 Default Matchers

 		
 Specifying Matchers

 		
 Making Your Own Matcher

 		
 on_init

 		
 Serializers

 		
 Creating Your Own Serializer

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

